Per Sonne Holm
Technische Universität München
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Per Sonne Holm.
Journal of Biological Chemistry | 2002
Per Sonne Holm; Stephan Bergmann; Karsten Jürchott; Hermann Lage; Karsten Brand; Axel Ladhoff; Klaus Mantwill; David T. Curiel; Matthias Dobbelstein; Manfred Dietel; Bernd Gansbacher; Hans-Dieter Royer
The adenovirus early proteins E1A and E1B-55kDa are key regulators of viral DNA replication, and it was thought that targeting of p53 by E1B-55kDa is essential for this process. Here we have identified a previously unrecognized function of E1B for adenovirus replication. We found that E1B-55kDa is involved in targeting the transcription factor YB-1 to the nuclei of adenovirus type 5-infected cells where it is associated with viral inclusion bodies believed to be sites of viral transcription and replication. We show that YB-1 facilitates E2 gene expression through the E2 late promoter thus controlling E2 gene activity at later stages of infection. The role of YB-1 for adenovirus replication was demonstrated with an E1-minus adenovirus vector containing a YB-1 transgene. In infected cells, AdYB-1 efficiently replicated and produced infectious progeny particles. Thus, adenovirus E1B-55kDa protein and the host cell factor YB-1 act jointly to facilitate adenovirus replication in the late phase of infection.
Cancer Research | 2004
Per Sonne Holm; Hermann Lage; Stephan Bergmann; Karsten Jürchott; Gabriel Glockzin; Alexandra Bernshausen; Klaus Mantwill; Axel Ladhoff; Anke Wichert; Joe S. Mymryk; Thomas Ritter; Manfred Dietel; Bernd Gansbacher; Hans-Dieter Royer
Resistance to chemotherapy is responsible for a failure of current treatment regimens in cancer patients. We have reported previously that the Y-box protein YB-1 regulates expression of the P-glycoprotein gene mdr1, which plays a major role in the development of a multidrug resistant-tumor phenotype. YB-1 predicts drug resistance and patient outcome in breast cancer. Thus, YB-1 is a promising target for new therapeutic approaches to defeat multidrug resistance. In drug-resistant cancer cells and in adenovirus-infected cells YB-1 is found in the nucleus. Nuclear accumulation of YB-1 in adenovirus-infected cells is a function of the E1 region, and we have shown that YB-1 facilitates adenovirus replication. Here we report that E1A-deleted or mutant adenovirus vectors, such as Ad312 and Ad520, replicate efficiently in multidrug-resistant (MDR) cancer cells and induce an adenovirus cytopathic effect resulting in host cell lysis. Thus, replication-defective adenoviruses are a previously unrecognized vector system for a selective elimination of MDR cancer cells. Our work forms the basis for the development of novel oncolytic adenovirus vectors for the treatment of MDR malignant diseases in the clinical setting.
The Journal of Nuclear Medicine | 2013
Geoffrey K. Grünwald; Alexandra Vetter; Kathrin Klutz; Michael J. Willhauck; Nathalie Schwenk; Reingard Senekowitsch-Schmidtke; Markus Schwaiger; Christian Zach; Ernst Wagner; Burkhard Göke; Per Sonne Holm; Manfred Ogris; Christine Spitzweg
Currently, major limitations for the clinical application of adenovirus-mediated gene therapy are high prevalence of neutralizing antibodies, widespread expression of the coxsackie-adenovirus receptor (CAR), and adenovirus sequestration by the liver. In the current study, we used the sodium iodide symporter (NIS) as a theranostic gene to investigate whether coating of adenovirus with synthetic dendrimers could be useful to overcome these hurdles in order to develop adenoviral vectors for combination of systemic oncolytic virotherapy and NIS-mediated radiotherapy. Methods: We coated replication-deficient (Ad5-CMV/NIS) (CMV is cytomegalovirus) and replication-selective (Ad5-E1/AFP-E3/NIS) adenovirus serotype 5 carrying the hNIS gene with poly(amidoamine) dendrimers generation 5 (PAMAM-G5) in order to investigate transduction efficacy and altered tropism of these coated virus particles by 123I scintigraphy and to evaluate their therapeutic potential for systemic radiovirotherapy in a liver cancer xenograft mouse model. Results: After dendrimer coating, Ad5-CMV/NIS demonstrated partial protection from neutralizing antibodies and enhanced transduction efficacy in CAR-negative cells in vitro. In vivo 123I scintigraphy of nude mice revealed significantly reduced levels of hepatic transgene expression after intravenous injection of dendrimer-coated Ad5-CMV/NIS (dcAd5-CMV/NIS). Evasion from liver accumulation resulted in significantly reduced liver toxicity and increased transduction efficiency of dcAd5-CMV/NIS in hepatoma xenografts. After PAMAM-G5 coating of the replication-selective Ad5-E1/AFP-E3/NIS, a significantly enhanced oncolytic effect was observed after intravenous application (virotherapy) that was further increased by additional treatment with a therapeutic dose of 131I (radiovirotherapy) and was associated with markedly improved survival. Conclusion: These results demonstrate efficient liver detargeting and tumor retargeting of adenoviral vectors after coating with synthetic dendrimers, thereby representing a promising innovative strategy for systemic NIS gene therapy. Moreover, our study—based on the function of NIS as a theranostic gene allowing the noninvasive imaging of NIS expression by 123I scintigraphy—provides detailed characterization of in vivo vector biodistribution and localization, level, and duration of transgene expression, essential prerequisites for exact planning and monitoring of clinical gene therapy trials that aim to individualize the NIS gene therapy concept.
Cancer Research | 2006
Klaus Mantwill; Nadia Köhler-Vargas; Alexandra Bernshausen; Alexa Bieler; Hermann Lage; Alexander Kaszubiak; Pavel Surowiak; Tanja Dravits; Uwe Treiber; R. Hartung; Bernd Gansbacher; Per Sonne Holm
Bearing in mind the limited success of available treatment modalities for the therapy of multidrug-resistant tumor cells, alternative and complementary strategies need to be developed. It is known that the transcriptional activation of genes, such as MDR1 and MRP1, which play a major role in the development of a multidrug-resistant phenotype in tumor cells, involves the Y-box protein YB-1. Thus, YB-1 is a promising target for new therapeutic approaches to defeat multidrug resistance. In addition, it has been reported previously that YB-1 is an important factor in adenoviral replication because it activates transcription from the adenoviral E2-late promoter. Here, we report that an oncolytic adenovirus, named Xvir03, expressing the viral proteins E1B55k and E4orf6, leads to nuclear translocation of YB-1 and in consequence to viral replication and cell lysis in vitro and in vivo. Moreover, we show that Xvir03 down-regulates the expression of MDR1 and MRP1, indicating that recruiting YB-1 to the adenoviral E2-late promoter for viral replication is responsible for this effect. Thus, nuclear translocation of YB-1 by Xvir03 leads to resensitization of tumor cells to cytotoxic drugs. These data reveal a link between chemotherapy and virotherapy based on the cellular transcription factor YB-1 and provide the basis for formulating a model for a novel combined therapy regimen named Mutually Synergistic Therapy.
Molecular Pharmaceutics | 2010
Nittaya Tresilwised; Pimolpan Pithayanukul; Olga Mykhaylyk; Per Sonne Holm; Regina Holzmüller; Martina Anton; Stefan Thalhammer; Denis Adigüzel; Markus Döblinger; Christian Plank
Oncolytic adenoviruses rank among the most promising innovative agents in cancer therapy. We examined the potential of boosting the efficacy of the oncolytic adenovirus dl520 by associating it with magnetic nanoparticles and magnetic-field-guided infection in multidrug-resistant (MDR) cancer cells in vitro and upon intratumoral injection in vivo. The virus was complexed by self-assembly with core-shell nanoparticles having a magnetite core of about 10 nm and stabilized by a shell containing 68 mass % lithium 3-[2-(perfluoroalkyl)ethylthio]propionate) and 32 mass % 25 kDa branched polyethylenimine. Optimized virus binding, sufficiently stable in 50% fetal calf serum, was found at nanoparticle-to-virus ratios of 5 fg of Fe per physical virus particle (VP) and above. As estimated from magnetophoretic mobility measurements, 3,600 to 4,500 magnetite nanocrystallites were associated per virus particle. Ultrastructural analysis by electron and atomic force microscopy showed structurally intact viruses surrounded by magnetic particles that occasionally bridged several virus particles. Viral uptake into cells at a given virus dose was enhanced 10-fold compared to nonmagnetic virus when infections were carried out under the influence of a magnetic field. Increased virus internalization resulted in a 10-fold enhancement of the oncolytic potency in terms of the dose required for killing 50% of the target cells (IC(50) value) and an enhancement of 4 orders of magnitude in virus progeny formation at equal input virus doses compared to nonmagnetic viruses. Furthermore, the full oncolytic effect developed within two days postinfection compared with six days in a nonmagnetic virus as a reference. Plotting target cell viability versus internalized virus particles for magnetic and nonmagnetic virus showed that the inherent oncolytic productivity of the virus remained unchanged upon association with magnetic nanoparticles. Hence, we conclude that the mechanism of boosting the oncolytic effect by magnetic force is mainly due to the improved internalization of magnetic virus complexes resulting in potentiated virus progeny formation. Upon intratumoral injection and application of a gradient magnetic field in a murine xenograft model, magnetic virus complexes exhibited a stronger oncolytic effect than adenovirus alone. We propose that this approach would be useful during in vivo administration to tumor-feeding blood vessels to boost the efficacy of the primary infection cycle within the tumor. For systemic application, further modification of magnetic adenovirus complexes for shielding and retargeting of the whole magnetic virus complex entity is needed.
Oncogene | 2004
Anke Wichert; Alexandra Stege; Yutaka Midorikawa; Per Sonne Holm; Hermann Lage
Elevated expression of the heparan sulphate proteoglycan glypican-3 (GPC3) was found on mRNA and protein levels in the atypical multidrug-resistant gastric carcinoma cell line EPG85-257RNOV, which was established by in vitro selection against mitoxantrone. In order to elucidate a putative role of GPC3 in the drug-resistant phenotype, the mitoxantrone-resistant cell line EPG85-257RNOV was transfected with an expression vector construct carrying an anti-GPC3 hammerhead ribozyme. It could be demonstrated that in anti-GPC3 ribozyme-transfected cell clones, the GPC3-specific mRNA and corresponding protein expression levels were decreased to levels that are similar to those observed in nonresistant, parental cells. The anti-GPC3 ribozyme-containing clones reduced the mitoxantrone resistance level up to 21% of the original resistance and the crossresistance against etoposide to 33% of the original value. This reversal of drug resistance was accompanied by an increased cellular mitoxantrone accumulation in the anti-GPC3 ribozyme-expressing cells. In conclusion, it was verified that GPC3 is involved in the cellular protection against mitoxantrone in the atypical multidrug-resistant gastric carcinoma cell line EPG85-257RNOV.
Experimental Dermatology | 2012
Tobias Sinnberg; Birgit Sauer; Per Sonne Holm; Barbara Spangler; Silke Kuphal; Anja K. Bosserhoff; Birgit Schittek
Abstract: Y‐box binding protein 1 (YB‐1) is an oncogenic transcription and translation factor and is overexpressed in several types of cancer. Our previous data showed that YB‐1 is upregulated and translocated to the nucleus during melanoma progression and that YB‐1 is an important transcription factor regulating proliferation, survival, migration, invasion and chemosensitivity of melanoma cells. It has been suggested that YB‐1 is activated and translocated to the nucleus after S102‐phosphorylation in the DNA binding domain. In this study, we show that activation of YB‐1 by S102‐phosphorylation and nuclear translocation is increased during melanoma progression using a human tissue microarray with 100 melanocytic lesions. Furthermore, we analysed the mechanisms governing the expression and activity of YB‐1 in melanoma cells. We show that the PI3K/AKT and p53 signalling, growth factors and chemotherapeutic agents increase YB‐1 promoter activity. This, however, resulted in no or only modest increase in YB‐1 protein expression. We show that the MAPK and PI3K/AKT signalling pathways, both activated in melanoma cells, as well as p53 overexpression increase YB‐1 S102‐phosphorylation, whereas NFκB signalling inhibits phosphorylation. Overexpression of YB‐1 in melanoma cells inhibits translation efficiency and by this proliferation and survival of melanoma cells indicating that there is an autoregulatory loop restricting YB‐1 protein expression. These data suggest that there is a tightly regulated feedback mechanism regulating YB‐1 expression and activation, necessary for proper cell cycle progression of melanoma cells.
Molecular therapy. Nucleic acids | 2013
Geoffrey K. Grünwald; Alexandra Vetter; Kathrin Klutz; Michael J. Willhauck; Nathalie Schwenk; Reingard Senekowitsch-Schmidtke; Markus Schwaiger; Christian Zach; Ernst Wagner; Burkhard Göke; Per Sonne Holm; Manfred Ogris; Christine Spitzweg
We recently demonstrated tumor-selective iodide uptake and therapeutic efficacy of combined radiovirotherapy after systemic delivery of the theranostic sodium iodide symporter (NIS) gene using a dendrimer-coated adenovirus. To further improve shielding and targeting we physically coated replication-selective adenoviruses carrying the hNIS gene with a conjugate consisting of cationic poly(amidoamine) (PAMAM) dendrimer linked to the peptidic, epidermal growth factor receptor (EGFR)-specific ligand GE11. In vitro experiments demonstrated coxsackie-adenovirus receptor-independent but EGFR-specific transduction efficiency. Systemic injection of the uncoated adenovirus in a liver cancer xenograft mouse model led to high levels of NIS expression in the liver due to hepatic sequestration, which were significantly reduced after coating as demonstrated by 123I-scintigraphy. Reduction of adenovirus liver pooling resulted in decreased hepatotoxicity and increased transduction efficiency in peripheral xenograft tumors. 124I-PET-imaging confirmed EGFR-specificity by significantly lower tumoral radioiodine accumulation after pretreatment with the EGFR-specific antibody cetuximab. A significantly enhanced oncolytic effect was observed following systemic application of dendrimer-coated adenovirus that was further increased by additional treatment with a therapeutic dose of 131I. These results demonstrate restricted virus tropism and tumor-selective retargeting after systemic application of coated, EGFR-targeted adenoviruses therefore representing a promising strategy for improved systemic adenoviral NIS gene therapy.
Biomaterials | 2012
Nittaya Tresilwised; Pimolpan Pithayanukul; Per Sonne Holm; Ulrike Schillinger; Christian Plank; Olga Mykhaylyk
Limitations to adenovirus infectivity can be overcome by association with magnetic nanoparticles and enforced infection by magnetic field influence. Here we examined three core-shell-type iron oxide magnetic nanoparticles differing in their surface coatings, particle sizes and magnetic properties for their ability to enhance the oncolytic potency of adenovirus Ad520 and to stabilize it against the inhibitory effects of serum or a neutralizing antibody. It was found that the physicochemical properties of magnetic nanoparticles are critical determinants of the properties which govern the oncolytic productivities of their complexes with Ad520. Although high serum concentration during infection or a neutralizing antibody had strong inhibitory influence on the uptake or oncolytic productivity of the naked virus, one particle type was identified which conferred high protection against both inhibitory factors while enhancing the oncolytic productivity of the internalized virus. This particle type equipped with a silica coating and adsorbed polyethylenimine, displaying a high magnetic moment and high saturation magnetization, mediated a 50% reduction of tumor growth rate versus control upon intratumoral injection of its complex with Ad520 and magnetic field influence, whereas Ad520 alone was inefficient. The correlations between physical properties of the magnetic particles or virus complexes and oncolytic potency are described herein.
Cancer Gene Therapy | 2001
Petra Kowalski; Anke Wichert; Per Sonne Holm; Manfred Dietel; Hermann Lage
Breast cancer resistance protein (BCRP) is a recently identified new member of the superfamily of ATP-binding cassette transporters. BCRP is a “half transporter” that may homo- or heterodimerize to form an active transport complex. A considerable overexpression of BCRP was reported from various atypical multidrug-resistant tumor cell lines, in particular from those which were established by treatment with mitoxantrone. Thus, BCRP represents a very interesting candidate molecule for reversal of a drug-resistant phenotype. Six hammerhead ribozymes directed against the BCRP-encoding mRNA were designed and tested for their ability to cleave their target molecule. The anti-BCRP ribozymes were in vitro synthesized using bacteriophage T7 RNA polymerase and oligonucleotide primers whereby one primer contains a T7 RNA polymerase promoter sequence. BCRP-encoding substrate RNA molecules were created by a reverse transcription polymerase chain reaction using total RNA prepared from the atypical multidrug-resistant gastric carcinoma cell line EPG85-257RNOV exhibiting a high BCRP mRNA expression level. One anti-BCRP ribozyme was found to show a very high endoribonucleolytic cleavage activity at physiologic pH and temperature. This ribozyme was characterized in a cell-free system with regard to its specific kinetic parameters using large target molecules. Cancer Gene Therapy (2001) 8, 185–192