Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Perot Saelao is active.

Publication


Featured researches published by Perot Saelao.


PLOS Genetics | 2012

Population Genomics of Sub-Saharan Drosophila melanogaster: African Diversity and Non-African Admixture

John E. Pool; Russell B. Corbett-Detig; Ryuichi P. Sugino; Kristian A. Stevens; Charis Cardeno; Marc W. Crepeau; Pablo Duchen; J. J. Emerson; Perot Saelao; David J. Begun; Charles H. Langley

Drosophila melanogaster has played a pivotal role in the development of modern population genetics. However, many basic questions regarding the demographic and adaptive history of this species remain unresolved. We report the genome sequencing of 139 wild-derived strains of D. melanogaster, representing 22 population samples from the sub-Saharan ancestral range of this species, along with one European population. Most genomes were sequenced above 25X depth from haploid embryos. Results indicated a pervasive influence of non-African admixture in many African populations, motivating the development and application of a novel admixture detection method. Admixture proportions varied among populations, with greater admixture in urban locations. Admixture levels also varied across the genome, with localized peaks and valleys suggestive of a non-neutral introgression process. Genomes from the same location differed starkly in ancestry, suggesting that isolation mechanisms may exist within African populations. After removing putatively admixed genomic segments, the greatest genetic diversity was observed in southern Africa (e.g. Zambia), while diversity in other populations was largely consistent with a geographic expansion from this potentially ancestral region. The European population showed different levels of diversity reduction on each chromosome arm, and some African populations displayed chromosome arm-specific diversity reductions. Inversions in the European sample were associated with strong elevations in diversity across chromosome arms. Genomic scans were conducted to identify loci that may represent targets of positive selection within an African population, between African populations, and between European and African populations. A disproportionate number of candidate selective sweep regions were located near genes with varied roles in gene regulation. Outliers for Europe-Africa FST were found to be enriched in genomic regions of locally elevated cosmopolitan admixture, possibly reflecting a role for some of these loci in driving the introgression of non-African alleles into African populations.


Science | 2014

Origin and Spread of de Novo Genes in Drosophila melanogaster Populations

Li Zhao; Perot Saelao; Corbin D. Jones; David J. Begun

Novel genes derived from ancestral noncoding sequences are polymorphic among fruit fly strains. Comparative genomic analyses have revealed that genes may arise from ancestrally nongenic sequence. However, the origin and spread of these de novo genes within populations remain obscure. We identified 142 segregating and 106 fixed testis-expressed de novo genes in a population sample of Drosophila melanogaster. These genes appear to derive primarily from ancestral intergenic, unexpressed open reading frames, with natural selection playing a significant role in their spread. These results reveal a heretofore unappreciated dynamism of gene content. Losses and Gains In order to better understand the process by which de novo genes originate, Zhao et al. (p. 769, published online 23 January) examined testis-based gene expression among Drosophila melanogaster strains and identified both fixed and polymorphic de novo genes. The results suggest that spontaneous activation of previously noncoding DNA may be an important factor in generating genetic novelty.


PLOS Genetics | 2013

De Novo ORFs in Drosophila Are Important to Organismal Fitness and Evolved Rapidly from Previously Non-coding Sequences

Josephine A. Reinhardt; Betty M. Wanjiru; Alicia T. Brant; Perot Saelao; David J. Begun; Corbin D. Jones

How non-coding DNA gives rise to new protein-coding genes (de novo genes) is not well understood. Recent work has revealed the origins and functions of a few de novo genes, but common principles governing the evolution or biological roles of these genes are unknown. To better define these principles, we performed a parallel analysis of the evolution and function of six putatively protein-coding de novo genes described in Drosophila melanogaster. Reconstruction of the transcriptional history of de novo genes shows that two de novo genes emerged from novel long non-coding RNAs that arose at least 5 MY prior to evolution of an open reading frame. In contrast, four other de novo genes evolved a translated open reading frame and transcription within the same evolutionary interval suggesting that nascent open reading frames (proto-ORFs), while not required, can contribute to the emergence of a new de novo gene. However, none of the genes arose from proto-ORFs that existed long before expression evolved. Sequence and structural evolution of de novo genes was rapid compared to nearby genes and the structural complexity of de novo genes steadily increases over evolutionary time. Despite the fact that these genes are transcribed at a higher level in males than females, and are most strongly expressed in testes, RNAi experiments show that most of these genes are essential in both sexes during metamorphosis. This lethality suggests that protein coding de novo genes in Drosophila quickly become functionally important.


G3: Genes, Genomes, Genetics | 2013

Genome of Drosophila suzukii, the Spotted Wing Drosophila

Joanna C. Chiu; Xuanting Jiang; Li Zhao; Christopher A. Hamm; Julie M. Cridland; Perot Saelao; Kelly A. Hamby; Ernest K. Lee; Rosanna S. Kwok; Guojie Zhang; Frank G. Zalom; Vaughn M. Walton; David J. Begun

Drosophila suzukii Matsumura (spotted wing drosophila) has recently become a serious pest of a wide variety of fruit crops in the United States as well as in Europe, leading to substantial yearly crop losses. To enable basic and applied research of this important pest, we sequenced the D. suzukii genome to obtain a high-quality reference sequence. Here, we discuss the basic properties of the genome and transcriptome and describe patterns of genome evolution in D. suzukii and its close relatives. Our analyses and genome annotations are presented in a web portal, SpottedWingFlyBase, to facilitate public access.


Molecular Ecology | 2014

Wolbachia do not live by reproductive manipulation alone: infection polymorphism in Drosophila suzukii and D. subpulchrella.

Christopher A. Hamm; David J. Begun; Alexandre Vo; Chris C. R. Smith; Perot Saelao; Amanda O. Shaver; John Jaenike; Michael Turelli

Drosophila suzukii recently invaded North America and Europe. Populations in Hawaii, California, New York and Nova Scotia are polymorphic for Wolbachia, typically with <20% infection frequency. The Wolbachia in D. suzukii, denoted wSuz, is closely related to wRi, the variant prevalent in continental populations of D. simulans. wSuz is also nearly identical to Wolbachia found in D. subpulchrella, plausibly D. suzukiis sister species. This suggests vertical Wolbachia transmission through cladogenesis (‘cladogenic transmission’). The widespread occurrence of 7–20% infection frequencies indicates a stable polymorphism. wSuz is imperfectly maternally transmitted, with wild infected females producing on average 5–10% uninfected progeny. As expected from its low frequency, wSuz produces no cytoplasmic incompatibility (CI), that is, no increased embryo mortality when infected males mate with uninfected females, and no appreciable sex‐ratio distortion. The persistence of wSuz despite imperfect maternal transmission suggests positive fitness effects. Assuming a balance between selection and imperfect transmission, we expect a fitness advantage on the order of 20%. Unexpectedly, Wolbachia‐infected females produce fewer progeny than do uninfected females. We do not yet understand the maintenance of wSuz in D. suzukii. The absence of detectable CI in D. suzukii and D. subpulchrella makes it unlikely that CI‐based mechanisms could be used to control this species without transinfection using novel Wolbachia. Contrary to their reputation as horizontally transmitted reproductive parasites, many Wolbachia infections are acquired through introgression or cladogenesis and many cause no appreciable reproductive manipulation. Such infections, likely to be mutualistic, may be central to understanding the pervasiveness of Wolbachia among arthropods.


Frontiers in Veterinary Science | 2015

Salmonella enterica Serovars Enteritidis Infection Alters the Indigenous Microbiota Diversity in Young Layer Chicks

Khin K.Z. Mon; Perot Saelao; Michelle M. Halstead; Ganrea Chanthavixay; Huai-Chen Chang; Lydia C. Garas; Elizabeth A. Maga; Huaijun Zhou

Avian gastrointestinal (GI) tracts are highly populated with a diverse array of microorganisms that share a symbiotic relationship with their hosts and contribute to the overall health and disease state of the intestinal tract. The microbiome of the young chick is easily prone to alteration in its composition by both exogenous and endogenous factors, especially during the early posthatch period. The genetic background of the host and exposure to pathogens can impact the diversity of the microbial profile that consequently contributes to the disease progression in the host. The objective of this study was to profile the composition and structure of the gut microbiota in young chickens from two genetically distinct highly inbred lines. Furthermore, the effect of the Salmonella Enteritidis infection on altering the composition makeup of the chicken microbiome was evaluated through the 16S rRNA gene sequencing analysis. One-day-old layer chicks were challenged with S. Enteritidis and the host cecal microbiota profile as well as the degree of susceptibility to Salmonella infection was examined at 2 and 7 days post infection. Our result indicated that host genotype had a limited effect on resistance to S. Enteritidis infection. Alpha diversity, beta diversity, and overall microbiota composition were analyzed for four factors: host genotype, age, treatment, and postinfection time points. S. Enteritidis infection in young chicks was found to significantly reduce the overall diversity of the microbiota population with expansion of Enterobacteriaceae family. These changes indicated that Salmonella colonization in the GI tract of the chickens has a direct effect on altering the natural development of the GI microbiota. The impact of S. Enteritidis infection on microbial communities was also more substantial in the late stage of infection. Significant inverse correlation between Enterobacteriaceae and Lachnospiraceae family in both non-infected and infected groups, suggested possible antagonistic interaction between members of these two taxa, which could potentially influences the overall microbial population in the gut. Our results also revealed that genetic difference between two lines had minimal effect on the establishment of microbiota population. Overall, this study provided preliminary insights into the contributing role of S. Enteritidis in influencing the overall makeup of chicken’s gut microbiota.


BMC Evolutionary Biology | 2015

Evidence that natural selection maintains genetic variation for sleep in Drosophila melanogaster

Nicolas Svetec; Li Zhao; Perot Saelao; Joanna C. Chiu; David J. Begun

BackgroundDrosophila melanogaster often shows correlations between latitude and phenotypic or genetic variation on different continents, which suggests local adaptation with respect to a heterogeneous environment. Previous phenotypic analyses of latitudinal clines have investigated mainly physiological, morphological, or life-history traits. Here, we studied latitudinal variation in sleep in D. melanogaster populations from North and Central America. In parallel, we used RNA-seq to identify interpopulation gene expression differences.ResultsWe found that in D. melanogaster the average nighttime sleep bout duration exhibits a latitudinal cline such that sleep bouts of equatorial populations are roughly twice as long as those of temperate populations. Interestingly, this pattern of latitudinal variation is not observed for any daytime measure of activity or sleep. We also found evidence for geographic variation for sunrise anticipation. Our RNA-seq experiment carried out on heads from a low and high latitude population identified a large number of gene expression differences, most of which were time dependent. Differentially expressed genes were enriched in circadian regulated genes and enriched in genes potentially under spatially varying selection.ConclusionOur results are consistent with a mechanistic and selective decoupling of nighttime and daytime activity. Furthermore, the present study suggests that natural selection plays a major role in generating transcriptomic variation associated with circadian behaviors. Finally, we identified genomic variants plausibly causally associated with the observed behavioral and transcriptomic variation.


Genetics | 2016

Genomic Patterns of Geographic Differentiation in Drosophila simulans

Alisa Sedghifar; Perot Saelao; David J. Begun

Geographic patterns of genetic differentiation have long been used to understand population history and to learn about the biological mechanisms of adaptation. Here we present an examination of genomic patterns of differentiation between northern and southern populations of Australian and North American Drosophila simulans, with an emphasis on characterizing signals of parallel differentiation. We report on the genomic scale of differentiation and functional enrichment of outlier SNPs. While, overall, signals of shared differentiation are modest, we find the strongest support for parallel differentiation in genomic regions that are associated with regulation. Comparisons to Drosophila melanogaster yield potential candidate genes involved in local adaptation in both species, providing insight into common selective pressures and responses. In contrast to D. melanogaster, in D. simulans we observe patterns of variation that are inconsistent with a model of temperate adaptation out of a tropical ancestral range, highlighting potential differences in demographic and colonization histories of this cosmopolitan species pair.


PLOS ONE | 2014

Toll Mediated Infection Response Is Altered by Gravity and Spaceflight in Drosophila

Katherine Taylor; Kurt Kleinhesselink; Michael D. George; Rachel Morgan; Tangi Smallwood; Ann S. Hammonds; Patrick M. Fuller; Perot Saelao; Jeff Alley; Allen G. Gibbs; Deborah K. Hoshizaki; Laurence von Kalm; Charles A. Fuller; Kathleen M. Beckingham; Deborah A. Kimbrell

Space travel presents unlimited opportunities for exploration and discovery, but requires better understanding of the biological consequences of long-term exposure to spaceflight. Immune function in particular is relevant for space travel. Human immune responses are weakened in space, with increased vulnerability to opportunistic infections and immune-related conditions. In addition, microorganisms can become more virulent in space, causing further challenges to health. To understand these issues better and to contribute to design of effective countermeasures, we used the Drosophila model of innate immunity to study immune responses in both hypergravity and spaceflight. Focusing on infections mediated through the conserved Toll and Imd signaling pathways, we found that hypergravity improves resistance to Toll-mediated fungal infections except in a known gravitaxis mutant of the yuri gagarin gene. These results led to the first spaceflight project on Drosophila immunity, in which flies that developed to adulthood in microgravity were assessed for immune responses by transcription profiling on return to Earth. Spaceflight alone altered transcription, producing activation of the heat shock stress system. Space flies subsequently infected by fungus failed to activate the Toll pathway. In contrast, bacterial infection produced normal activation of the Imd pathway. We speculate on possible linkage between functional Toll signaling and the heat shock chaperone system. Our major findings are that hypergravity and spaceflight have opposing effects, and that spaceflight produces stress-related transcriptional responses and results in a specific inability to mount a Toll-mediated infection response.


Poultry Science | 2018

Physiological responses to heat stress in two genetically distinct chicken inbred lines

Ying Wang; Perot Saelao; K Chanthavixay; Rodrigo A. Gallardo; David A. Bunn; S. J. Lamont; Jack C. M. Dekkers; Terra R. Kelly; Huaijun Zhou

Abstract High ambient temperature is one of the most important environmental factors negatively impacting poultry production and health. Genetics is an important contributor in mitigating the stress response to heat. Two genetically distinct highly inbred lines of similar body size (Leghorn and Fayoumi) were characterized for phenotypic differences in response to heat. At 14 days of age, birds were exposed to 38°C with 50% humidity for 4 hours, then 35°C until the conclusion of the experiment. Non‐treated individuals were kept at 29.4°C for the first week and then 25°C throughout the experiment. Birds in the heat‐stress group were inoculated at day (d) 21 with Newcastle disease virus (NDV) La Sota strain to investigate the effects of heat stress and NDV infection. Thirteen blood parameters were measured using the iSTAT blood analyzer at three stages: 4 h, 6 d, and 9 d post heat‐stress treatment, representing acute heat (AH) exposure, chronic heat (CH1) exposure, and chronic heat exposure after virus infection (CH2), respectively. Most blood parameters were significantly changed with heat stress in Leghorns at AH and in Fayoumis at CH1 and CH2. The Leghorn line had significant acute responses with disrupted acid‐base balance and metabolic disorders. The heat‐resilient Fayoumis maintained a relatively well‐balanced acid‐base balance. The current study provides the comprehensive profile of biomarker signatures in blood associated with heat tolerance and suggests that PO2, TCO2, HCO3, and base excess can be served as potential biomarkers that can be used to genetically improve heat tolerance in poultry.

Collaboration


Dive into the Perot Saelao's collaboration.

Top Co-Authors

Avatar

David J. Begun

University of California

View shared research outputs
Top Co-Authors

Avatar

Huaijun Zhou

University of California

View shared research outputs
Top Co-Authors

Avatar

Ying Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Li Zhao

University of California

View shared research outputs
Top Co-Authors

Avatar

Terra R. Kelly

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corbin D. Jones

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanna C. Chiu

University of California

View shared research outputs
Top Co-Authors

Avatar

Khin K.Z. Mon

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge