Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Perry B. Hackett is active.

Publication


Featured researches published by Perry B. Hackett.


Cell | 1997

Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells

Zoltan Ivics; Perry B. Hackett; Ronald H.A. Plasterk; Zsuzsanna Izsvák

Members of the Tc1/mariner superfamily of transposons isolated from fish appear to be transpositionally inactive due to the accumulation of mutations. Molecular phylogenetic data were used to construct a synthetic transposon, Sleeping Beauty, which could be identical or equivalent to an ancient element that dispersed in fish genomes in part by horizontal transmission between species. A consensus sequence of a transposase gene of the salmonid subfamily of elements was engineered by eliminating the inactivating mutations. Sleeping Beauty transposase binds to the inverted repeats of salmonid transposons in a substrate-specific manner, and it mediates precise cut-and-paste transposition in fish as well as in mouse and human cells. Sleeping Beauty is an active DNA-transposon system from vertebrates for genetic transformation and insertional mutagenesis.


Molecular Therapy | 2003

Gene transfer into genomes of human cells by the sleeping beauty transposon system.

Aron M. Geurts; Ying Yang; Karl J. Clark; Geyi Liu; Zongbin Cui; Adam J. Dupuy; Jason B. Bell; David A. Largaespada; Perry B. Hackett

The Sleeping Beauty (SB) transposon system, derived from teleost fish sequences, is extremely effective at delivering DNA to vertebrate genomes, including those of humans. We have examined several parameters of the SB system to improve it as a potential, nonviral vector for gene therapy. Our investigation centered on three features: the carrying capacity of the transposon for efficient integration into chromosomes of HeLa cells, the effects of overexpression of the SB transposase gene on transposition rates, and improvements in the activity of SB transposase to increase insertion rates of transgenes into cellular chromosomes. We found that SB transposons of about 6 kb retained 50% of the maximal efficiency of transposition, which is sufficient to deliver 70-80% of identified human cDNAs with appropriate transcriptional regulatory sequences. Overexpression inhibition studies revealed that there are optimal ratios of SB transposase to transposon for maximal rates of transposition, suggesting that conditions of delivery of the two-part transposon system are important for the best gene-transfer efficiencies. We further refined the SB transposase to incorporate several amino acid substitutions, the result of which led to an improved transposase called SB11. With SB11 we are able to achieve transposition rates that are about 100-fold above those achieved with plasmids that insert into chromosomes by random recombination. With the recently described improvements to the transposon itself, the SB system appears to be a potential gene-transfer tool for human gene therapy.


PLOS Genetics | 2005

Harnessing a high cargo-capacity transposon for genetic applications in vertebrates.

Darius Balciunas; Kirk J. Wangensteen; Andrew Wilber; Jason B. Bell; Aron M. Geurts; Sridhar Sivasubbu; Xinxin Wang; Perry B. Hackett; David A. Largaespada; R. Scott McIvor; Stephen C. Ekker

Viruses and transposons are efficient tools for permanently delivering foreign DNA into vertebrate genomes but exhibit diminished activity when cargo exceeds 8 kilobases (kb). This size restriction limits their molecular genetic and biotechnological utility, such as numerous therapeutically relevant genes that exceed 8 kb in size. Furthermore, a greater payload capacity vector would accommodate more sophisticated cis cargo designs to modulate the expression and mutagenic risk of these molecular therapeutics. We show that the Tol2 transposon can efficiently integrate DNA sequences larger than 10 kb into human cells. We characterize minimal sequences necessary for transposition (miniTol2) in vivo in zebrafish and in vitro in human cells. Both the 8.5-kb Tol2 transposon and 5.8-kb miniTol2 engineered elements readily function to revert the deficiency of fumarylacetoacetate hydrolase in an animal model of hereditary tyrosinemia type 1. Together, Tol2 provides a novel nonviral vector for the delivery of large genetic payloads for gene therapy and other transgenic applications.


Cancer Research | 2008

Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system.

Harjeet Singh; Pallavi R. Manuri; Simon Olivares; Navid Dara; Margaret J. Dawson; Helen Huls; Perry B. Hackett; Donald B. Kohn; Elizabeth J. Shpall; Richard E. Champlin; Laurence J.N. Cooper

Genetic modification of clinical-grade T cells is undertaken to augment function, including redirecting specificity for desired antigen. We and others have introduced a chimeric antigen receptor (CAR) to enable T cells to recognize lineage-specific tumor antigen, such as CD19, and early-phase human trials are currently assessing safety and feasibility. However, a significant barrier to next-generation clinical studies is developing a suitable CAR expression vector capable of genetically modifying a broad population of T cells. Transduction of T cells is relatively efficient but it requires specialized manufacture of expensive clinical grade recombinant virus. Electrotransfer of naked DNA plasmid offers a cost-effective alternative approach, but the inefficiency of transgene integration mandates ex vivo selection under cytocidal concentrations of drug to enforce expression of selection genes to achieve clinically meaningful numbers of CAR(+) T cells. We report a new approach to efficiently generating T cells with redirected specificity, introducing DNA plasmids from the Sleeping Beauty transposon/transposase system to directly express a CD19-specific CAR in memory and effector T cells without drug selection. When coupled with numerical expansion on CD19(+) artificial antigen-presenting cells, this gene transfer method results in rapid outgrowth of CD4(+) and CD8(+) T cells expressing CAR to redirect specificity for CD19(+) tumor cells.


Journal of Molecular Biology | 2002

Structure-Function Analysis of the Inverted Terminal Repeats of the Sleeping Beauty Transposon

Zongbin Cui; Aron M. Geurts; Geyi Liu; Christopher D. Kaufman; Perry B. Hackett

Translocation of Sleeping Beauty (SB) transposon requires specific binding of SB transposase to inverted terminal repeats (ITRs) of about 230 bp at each end of the transposon, which is followed by a cut-and-paste transfer of the transposon into a target DNA sequence. The ITRs contain two imperfect direct repeats (DRs) of about 32 bp. The outer DRs are at the extreme ends of the transposon whereas the inner DRs are located inside the transposon, 165-166 bp from the outer DRs. Here we investigated the roles of the DR elements in transposition. Although there is a core transposase-binding sequence common to all of the DRs, additional adjacent sequences are required for transposition and these sequences vary in the different DRs. As a result, SB transposase binds less tightly to the outer DRs than to the inner DRs. Two DRs are required in each ITR for transposition but they are not interchangeable for efficient transposition. Each DR appears to have a distinctive role in transposition. The spacing and sequence between the DR elements in an ITR affect transposition rates, suggesting a constrained geometry is involved in the interactions of SB transposase molecules in order to achieve precise mobilization. Transposons are flanked by TA dinucleotide base-pairs that are important for excision; elimination of the TA motif on one side of the transposon significantly reduces transposition while loss of TAs on both flanks of the transposon abolishes transposition. These findings have led to the construction of a more advanced transposon that should be useful in gene transfer and insertional mutagenesis in vertebrates.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Mammalian germ-line transgenesis by transposition

Adam J. Dupuy; Karl J. Clark; Corey M. Carlson; Sabine Fritz; Ann E. Davidson; Karra M. Markley; Ken Finley; Colin F. Fletcher; Stephen C. Ekker; Perry B. Hackett; Sandra Horn; David A. Largaespada

Transposons have been used in invertebrates for transgenesis and insertional mutagens in genetic screens. We tested a functional transposon called Sleeping Beauty in the one-cell mouse embryo. In this report, we describe experiments in which transposon vectors were injected into one-cell mouse embryos with mRNA expressing the SB10 transposase enzyme. Molecular evidence of transposition was obtained by cloning of insertion sites from multiple transgenic mice produced by SB10 mRNA/transposon coinjection. We also demonstrate germ-line transmission and expression from transposed elements. This technique has promise as a germ-line transgenesis method in other vertebrate species and for insertional mutagenesis in the mouse.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Efficient nonmeiotic allele introgression in livestock using custom endonucleases

Wenfang Tan; Daniel F. Carlson; Cheryl A. Lancto; John R. Garbe; Dennis A. Webster; Perry B. Hackett; Scott C. Fahrenkrug

Significance Selective breeding has long been practiced to enrich for desirable DNA variation that influences livestock traits. We demonstrate that genetic variants can be directly introgressed into livestock genomes using a modified transcription activator-like effector nuclease system. The transient exposure of livestock cells to sequence-targeted editors stimulates homology-directed repair to levels that eliminate the need for transgene-dependent selection. Use of oligonucleotide template enables efficient single nucleotide changes to the genome and permits the transmission of both natural and novel DNA sequence variants into naïve livestock breeds and species. Gene editing offers a powerful method for accelerating the genetic improvement of livestock for food and also for developing swine as a resource for regenerative medicine and models of human disease. We have expanded the livestock gene editing toolbox to include transcription activator-like (TAL) effector nuclease (TALEN)- and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-stimulated homology-directed repair (HDR) using plasmid, rAAV, and oligonucleotide templates. Toward the genetic dehorning of dairy cattle, we introgressed a bovine POLLED allele into horned bull fibroblasts. Single nucleotide alterations or small indels were introduced into 14 additional genes in pig, goat, and cattle fibroblasts using TALEN mRNA and oligonucleotide transfection with efficiencies of 10–50% in populations. Several of the chosen edits mimic naturally occurring performance-enhancing or disease- resistance alleles, including alteration of single base pairs. Up to 70% of the fibroblast colonies propagated without selection harbored the intended edits, of which more than one-half were homozygous. Edited fibroblasts were used to generate pigs with knockout alleles in the DAZL and APC genes to model infertility and colon cancer. Our methods enable unprecedented meiosis-free intraspecific and interspecific introgression of select alleles in livestock for agricultural and biomedical applications.


Molecular Therapy | 2010

A Transposon and Transposase System for Human Application

Perry B. Hackett; David A. Largaespada; Laurence J.N. Cooper

The stable introduction of therapeutic transgenes into human cells can be accomplished using viral and nonviral approaches. Transduction with clinical-grade recombinant viruses offers the potential of efficient gene transfer into primary cells and has a record of therapeutic successes. However, widespread application for gene therapy using viruses can be limited by their initially high cost of manufacture at a limited number of production facilities as well as a propensity for nonrandom patterns of integration. The ex vivo application of transposon-mediated gene transfer now offers an alternative to the use of viral vectors. Clinical-grade DNA plasmids can be prepared at much reduced cost and with lower immunogenicity, and the integration efficiency can be improved by the transient coexpression of a hyperactive transposase. This has facilitated the design of human trials using the Sleeping Beauty (SB) transposon system to introduce a chimeric antigen receptor (CAR) to redirect the specificity of human T cells. This review examines the rationale and safety implications of application of the SB system to genetically modify T cells to be manufactured in compliance with current good manufacturing practice (cGMP) for phase I/II trials.


Advances in Genetics | 2005

Sleeping Beauty Transposon‐Mediated Gene Therapy for Prolonged Expression

Perry B. Hackett; Stephen C. Ekker; David A. Largaespada; R. Scott McIvor

The Sleeping Beauty (SB) transposon system represents a new vector for non-viral gene transfer that melds advantages of viruses and other forms of naked DNA transfer. The transposon itself is comprised of two inverted terminal repeats of about 340 base pairs each. The SB system directs precise transfer of specific constructs from a donor plasmid into a mammalian chromosome. The excision of the transposon from a donor plasmid and integration into a chromosomal site is mediated by Sleeping Beauty transposase, which can be delivered to cells vita its gene or its mRNA. As a result of its integration in chromosomes, and its lack of viral sequences that are often detected by poorly understood cellular defense mechanisms, a gene in a chromosomally integrated transposon can be expressed over the lifetime of a cell. SB transposons integrate nearly randomly into chromosomes at TA-dinucleotide base pairs although the sequences flanking the TAs can influence the probability of integration at a given site. Although random integration of vectors into human genomes is often thought to raise significant safety issues, evidence to date does not indicate that random insertions of SB transposons represent risks that are equal to those of viral vectors. Here we review the activities of the SB system in mice used as a model for human gene therapy, methods of delivery of the SB system, and its efficacy in ameliorating disorders that model human disease.


Development | 2010

Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis

Ying Wang; Mark S. Kaiser; Jon D. Larson; Aidas Nasevicius; Karl J. Clark; Shannon A. Wadman; Sharon Roberg-Perez; Stephen C. Ekker; Perry B. Hackett; Maura McGrail; Jeffrey J. Essner

Endothelial tubulogenesis is a crucial step in the formation of functional blood vessels during angiogenesis and vasculogenesis. Here, we use in vivo imaging of living zebrafish embryos expressing fluorescent fusion proteins of β-Actin, α-Catenin, and the ERM family member Moesin1 (Moesin a), to define a novel cord hollowing process that occurs during the initial stages of tubulogenesis in intersegmental vessels (ISVs) in the embryo. We show that the primary lumen elongates along cell junctions between at least two endothelial cells during embryonic angiogenesis. Moesin1-EGFP is enriched around structures that resemble intracellular vacuoles, which fuse with the luminal membrane during expansion of the primary lumen. Analysis of silent heart mutant embryos shows that initial lumen formation in the ISVs is not dependent on blood flow; however, stabilization of a newly formed lumen is dependent upon blood flow. Zebrafish moesin1 knockdown and cell transplantation experiments demonstrate that Moesin1 is required in the endothelial cells of the ISVs for in vivo lumen formation. Our analyses suggest that Moesin1 contributes to the maintenance of apical/basal cell polarity of the ISVs as defined by adherens junctions. Knockdown of the adherens junction protein Ve-cadherin disrupts formation of the apical membrane and lumen in a cell-autonomous manner. We suggest that Ve-cadherin and Moesin1 function to establish and maintain apical/basal polarity during multicellular lumen formation in the ISVs.

Collaboration


Dive into the Perry B. Hackett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zoltan Ivics

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurence J.N. Cooper

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge