Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David A. Largaespada is active.

Publication


Featured researches published by David A. Largaespada.


Nature | 2002

Pluripotency of mesenchymal stem cells derived from adult marrow

Yuehua Jiang; Balkrishna Jahagirdar; R. Lee Reinhardt; Robert E. Schwartz; C. Dirk Keene; Xilma R. Ortiz-Gonzalez; Morayma Reyes; Todd Lenvik; Troy C. Lund; Mark Blackstad; Jingbo Du; Sara Aldrich; Aaron Lisberg; Walter C. Low; David A. Largaespada; Catherine M. Verfaillie

We report here that cells co-purifying with mesenchymal stem cells—termed here multipotent adult progenitor cells or MAPCs—differentiate, at the single cell level, not only into mesenchymal cells, but also cells with visceral mesoderm, neuroectoderm and endoderm characteristics in vitro. When injected into an early blastocyst, single MAPCs contribute to most, if not all, somatic cell types. On transplantation into a non-irradiated host, MAPCs engraft and differentiate to the haematopoietic lineage, in addition to the epithelium of liver, lung and gut. Engraftment in the haematopoietic system as well as the gastrointestinal tract is increased when MAPCs are transplanted in a minimally irradiated host. As MAPCs proliferate extensively without obvious senescence or loss of differentiation potential, they may be an ideal cell source for therapy of inherited or degenerative diseases.


Nature | 2011

Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma

Ignacio Varela; Patrick Tarpey; Keiran Raine; Dachuan Huang; Choon Kiat Ong; Philip Stephens; Helen Davies; David Jones; Meng-Lay Lin; Jon Teague; Graham R. Bignell; Adam Butler; Juok Cho; Gillian L. Dalgliesh; Danushka Galappaththige; Christopher Greenman; Claire Hardy; Mingming Jia; Calli Latimer; King Wai Lau; John Marshall; Stuart McLaren; Andrew Menzies; Laura Mudie; Lucy Stebbings; David A. Largaespada; Lodewyk F. A. Wessels; Stéphane Richard; Richard J. Kahnoski; John Anema

The genetics of renal cancer is dominated by inactivation of the VHL tumour suppressor gene in clear cell carcinoma (ccRCC), the commonest histological subtype. A recent large-scale screen of ∼3,500 genes by PCR-based exon re-sequencing identified several new cancer genes in ccRCC including UTX (also known as KDM6A), JARID1C (also known as KDM5C) and SETD2 (ref. 2). These genes encode enzymes that demethylate (UTX, JARID1C) or methylate (SETD2) key lysine residues of histone H3. Modification of the methylation state of these lysine residues of histone H3 regulates chromatin structure and is implicated in transcriptional control. However, together these mutations are present in fewer than 15% of ccRCC, suggesting the existence of additional, currently unidentified cancer genes. Here, we have sequenced the protein coding exome in a series of primary ccRCC and report the identification of the SWI/SNF chromatin remodelling complex gene PBRM1 (ref. 4) as a second major ccRCC cancer gene, with truncating mutations in 41% (92/227) of cases. These data further elucidate the somatic genetic architecture of ccRCC and emphasize the marked contribution of aberrant chromatin biology.


Nature | 2012

Recurrent R-spondin fusions in colon cancer

Somasekar Seshagiri; Eric Stawiski; Steffen Durinck; Zora Modrusan; Elaine E. Storm; Caitlin B. Conboy; Subhra Chaudhuri; Yinghui Guan; Vasantharajan Janakiraman; Bijay S. Jaiswal; Joseph Guillory; Connie Ha; Gerrit J. P. Dijkgraaf; Jeremy Stinson; Florian Gnad; Melanie A. Huntley; Jeremiah D. Degenhardt; Peter M. Haverty; Richard Bourgon; Weiru Wang; Hartmut Koeppen; Robert Gentleman; Timothy K. Starr; Zemin Zhang; David A. Largaespada; Thomas D. Wu; Frederic J. de Sauvage

Identifying and understanding changes in cancer genomes is essential for the development of targeted therapeutics. Here we analyse systematically more than 70 pairs of primary human colon tumours by applying next-generation sequencing to characterize their exomes, transcriptomes and copy-number alterations. We have identified 36,303 protein-altering somatic changes that include several new recurrent mutations in the Wnt pathway gene TCF7L2, chromatin-remodelling genes such as TET2 and TET3 and receptor tyrosine kinases including ERBB3. Our analysis for significantly mutated cancer genes identified 23 candidates, including the cell cycle checkpoint kinase ATM. Copy-number and RNA-seq data analysis identified amplifications and corresponding overexpression of IGF2 in a subset of colon tumours. Furthermore, using RNA-seq data we identified multiple fusion transcripts including recurrent gene fusions involving R-spondin family members RSPO2 and RSPO3 that together occur in 10% of colon tumours. The RSPO fusions were mutually exclusive with APC mutations, indicating that they probably have a role in the activation of Wnt signalling and tumorigenesis. Consistent with this we show that the RSPO fusion proteins were capable of potentiating Wnt signalling. The R-spondin gene fusions and several other gene mutations identified in this study provide new potential opportunities for therapeutic intervention in colon cancer.


Nature | 2005

Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system

Adam J. Dupuy; Keiko Akagi; David A. Largaespada; Neal G. Copeland; Nancy A. Jenkins

Transposons have provided important genetic tools for functional genomic screens in lower eukaryotes but have proven less useful in higher eukaryotes because of their low transposition frequency. Here we show that Sleeping Beauty (SB), a member of the Tc1/mariner class of transposons, can be mobilized in mouse somatic cells at frequencies high enough to induce embryonic death and cancer in wild-type mice. Tumours are aggressive, with some animals developing two or even three different types of cancer within a few months of birth. The tumours result from SB insertional mutagenesis of cancer genes, thus facilitating the identification of genes and pathways that induce disease. SB transposition can easily be controlled to mutagenize any target tissue and can therefore, in principle, be used to induce many of the cancers affecting humans, including those for which little is known about the aetiology. The uses of SB are also not restricted to the mouse and could potentially be used for forward genetic screens in any higher eukaryote in which transgenesis is possible.


Nature | 2005

Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse

Lara S. Collier; Corey M. Carlson; Shruthi Ravimohan; Adam J. Dupuy; David A. Largaespada

Retroviruses, acting as somatic cell insertional mutagens, have been widely used to identify cancer genes in the haematopoietic system and mammary gland. An insertional mutagen for use in other mouse somatic cells would facilitate the identification of genes involved in tumour formation in a wider variety of tissues. Here we report the ability of the Sleeping Beauty transposon to act as a somatic insertional mutagen to identify genes involved in solid tumour formation. A Sleeping Beauty transposon, engineered to elicit loss-of-function or gain-of-function mutations, transposed in all somatic tissues tested and accelerated tumour formation in mice predisposed to cancer. Cloning transposon insertion sites from these tumours revealed the presence of common integration sites, at known and candidate cancer genes, similar to those observed in retroviral mutagenesis screens. Sleeping Beauty is a new tool for unbiased, forward genetic screens for cancer genes in vivo.


Molecular Therapy | 2003

Gene transfer into genomes of human cells by the sleeping beauty transposon system.

Aron M. Geurts; Ying Yang; Karl J. Clark; Geyi Liu; Zongbin Cui; Adam J. Dupuy; Jason B. Bell; David A. Largaespada; Perry B. Hackett

The Sleeping Beauty (SB) transposon system, derived from teleost fish sequences, is extremely effective at delivering DNA to vertebrate genomes, including those of humans. We have examined several parameters of the SB system to improve it as a potential, nonviral vector for gene therapy. Our investigation centered on three features: the carrying capacity of the transposon for efficient integration into chromosomes of HeLa cells, the effects of overexpression of the SB transposase gene on transposition rates, and improvements in the activity of SB transposase to increase insertion rates of transgenes into cellular chromosomes. We found that SB transposons of about 6 kb retained 50% of the maximal efficiency of transposition, which is sufficient to deliver 70-80% of identified human cDNAs with appropriate transcriptional regulatory sequences. Overexpression inhibition studies revealed that there are optimal ratios of SB transposase to transposon for maximal rates of transposition, suggesting that conditions of delivery of the two-part transposon system are important for the best gene-transfer efficiencies. We further refined the SB transposase to incorporate several amino acid substitutions, the result of which led to an improved transposase called SB11. With SB11 we are able to achieve transposition rates that are about 100-fold above those achieved with plasmids that insert into chromosomes by random recombination. With the recently described improvements to the transposon itself, the SB system appears to be a potential gene-transfer tool for human gene therapy.


Nature | 2012

Clonal selection drives genetic divergence of metastatic medulloblastoma

Xiaochong Wu; Paul A. Northcott; Adrian Dubuc; Adam J. Dupuy; David Shih; Hendrik Witt; Sidney Croul; Eric Bouffet; Daniel W. Fults; Charles G. Eberhart; Livia Garzia; Timothy Van Meter; David Zagzag; Nada Jabado; Jeremy Schwartzentruber; Jacek Majewski; Todd E. Scheetz; Stefan M. Pfister; Andrey Korshunov; Xiao-Nan Li; Stephen W. Scherer; Yoon-Jae Cho; Keiko Akagi; Tobey J. MacDonald; Jan Koster; Martin McCabe; Aaron L. Sarver; V. Peter Collins; William A. Weiss; David A. Largaespada

Medulloblastoma, the most common malignant paediatric brain tumour, arises in the cerebellum and disseminates through the cerebrospinal fluid in the leptomeningeal space to coat the brain and spinal cord. Dissemination, a marker of poor prognosis, is found in up to 40% of children at diagnosis and in most children at the time of recurrence. Affected children therefore are treated with radiation to the entire developing brain and spinal cord, followed by high-dose chemotherapy, with the ensuing deleterious effects on the developing nervous system. The mechanisms of dissemination through the cerebrospinal fluid are poorly studied, and medulloblastoma metastases have been assumed to be biologically similar to the primary tumour. Here we show that in both mouse and human medulloblastoma, the metastases from an individual are extremely similar to each other but are divergent from the matched primary tumour. Clonal genetic events in the metastases can be demonstrated in a restricted subclone of the primary tumour, suggesting that only rare cells within the primary tumour have the ability to metastasize. Failure to account for the bicompartmental nature of metastatic medulloblastoma could be a major barrier to the development of effective targeted therapies.


Nature Genetics | 1996

Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia.

David A. Largaespada; Camilynn I. Brannan; Nancy A. Jenkins; Neal G. Copeland

The Ras signal transduction pathway is often deregulated in human myeloid leukaemia. For example, activating point mutations in RAS genes are found in some patients with juvenile chronic myelogenous leukaemia (JCML), while other patients with JCML show loss of the neurofibromatosis type 1 (NF1) gene, a Ras GTPase activating protein. By generating mice whose haematopoietic system is reconsituted with NF1 deficient haematopoietic stem cells we show that NF1 gene loss, by itself, is sufficient to produce the myeloproliferative symptoms associated with human JCML. We also provide evidence to indicate that NF1 gene loss induces myeloproliferative disease through a Ras-mediated hypersensitivity to granulocyte/macrophage-colony stimulating factor (GM-CSF). Finally, we describe a genetic screen for identifying genes that cooperate with NF1 gene loss during progression to acute myeloid leukaemia.


Science | 2009

A transposon-based genetic screen in mice identifies genes altered in colorectal cancer

Timothy K. Starr; Raha Allaei; Kevin A. T. Silverstein; Rodney Staggs; Aaron L. Sarver; Tracy L. Bergemann; Mihir Gupta; M. Gerard O'Sullivan; Ilze Matise; Adam J. Dupuy; Lara S. Collier; Scott Powers; Ann L. Oberg; Yan W. Asmann; Stephen N. Thibodeau; Lino Tessarollo; Neal G. Copeland; Nancy A. Jenkins; Robert T. Cormier; David A. Largaespada

Human colorectal cancers (CRCs) display a large number of genetic and epigenetic alterations, some of which are causally involved in tumorigenesis (drivers) and others that have little functional impact (passengers). To help distinguish between these two classes of alterations, we used a transposon-based genetic screen in mice to identify candidate genes for CRC. Mice harboring mutagenic Sleeping Beauty (SB) transposons were crossed with mice expressing SB transposase in gastrointestinal tract epithelium. Most of the offspring developed intestinal lesions, including intraepithelial neoplasia, adenomas, and adenocarcinomas. Analysis of over 16,000 transposon insertions identified 77 candidate CRC genes, 60 of which are mutated and/or dysregulated in human CRC and thus are most likely to drive tumorigenesis. These genes include APC, PTEN, and SMAD4. The screen also identified 17 candidate genes that had not previously been implicated in CRC, including POLI, PTPRK, and RSPO2.


Nature Genetics | 1999

Leukaemia disease genes: Large-scale cloning and pathway predictions

Jiayin Li; Haifa Shen; Karen L. Himmel; Adam J. Dupuy; David A. Largaespada; Takuro Nakamura; John D. Shaughnessy; Nancy A. Jenkins; Neal G. Copeland

Retroviral insertional mutagenesis in BXH2 and AKXD recombinant inbred mice induces a high incidence of myeloid or B- and T-cell leukaemia and the proviral integration sites in the leukaemias provide powerful genetic tags for disease gene identification. Some of the disease genes identified by proviral tagging are also associated with human disease, validating this approach for human disease gene identification. Although many leukaemia disease genes have been identified over the years, many more remain to be cloned. Here we describe an inverse PCR (IPCR) method for proviral tagging that makes use of automated DNA sequencing and the genetic tools provided by the Mouse Genome Project, which increases the throughput for disease gene identification. We also use this IPCR method to clone and analyse more than 400 proviral integration sites from AKXD and BXH2 leukaemias and, in the process, identify more than 90 candidate disease genes. Some of these genes function in pathways already implicated in leukaemia, whereas others are likely to define new disease pathways. Our studies underscore the power of the mouse as a tool for gene discovery and functional genomics.

Collaboration


Dive into the David A. Largaespada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy A. Jenkins

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Neal G. Copeland

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Vincent W. Keng

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lara S. Collier

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge