Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Petek Ballar is active.

Publication


Featured researches published by Petek Ballar.


Journal of Biological Chemistry | 2006

The Role of a Novel p97/Valosin-containing Protein-interacting Motif of gp78 in Endoplasmic Reticulum-associated Degradation

Petek Ballar; Yuxian Shen; Hui Yang; Shengyun Fang

Improperly folded proteins in the endoplasmic reticulum (ER) are eliminated via ER-associated degradation, a process that dislocates misfolded proteins from the ER membrane into the cytosol, where they undergo proteasomal degradation. Dislocation requires a subclass of ubiquitin ligases that includes gp78 in addition to the AAA ATPase p97/VCP and its cofactor, the Ufd1-Npl4 dimer. We have previously reported that gp78 interacts directly with p97/VCP. Here, we identify a novel p97/VCP-interacting motif (VIM) within gp78 that mediates this interaction. We demonstrate that the VIM of gp78 recruits p97/VCP to the ER, but has no effect on Ufd1 localization. We also show that gp78 VIM interacts with the ND1 domain of p97/VCP that was shown previously to be the binding site for Ufd1. To evaluate the role of Ufd1 in gp78-p97/VCP-mediated degradation of CD3δ, a known substrate of gp78, RNA interference was used to silence the expression of Ufd1 and p97/VCP. Inhibition of p97/VCP, but not Ufd1, stabilized CD3δ in cells that overexpress gp78. However, both p97/VCP and Ufd1 appear to be required for CD3δ degradation in cells expressing physiological levels of gp78. These results raise the possibility that Ufd1 and gp78 may bind p97/VCP in a mutually exclusive manner and suggest that gp78 might act in a Ufd1-independent degradation pathway for misfolded ER proteins, which operates in parallel with the previously established p97/VCP-Ufd1-Npl4-mediated mechanism.


Journal of Biological Chemistry | 2007

Identification of SVIP as an endogenous inhibitor of endoplasmic reticulum-associated degradation.

Petek Ballar; Yongwang Zhong; Masami Nagahama; Mitsuo Tagaya; Yuxian Shen; Shengyun Fang

Misfolded proteins in the endoplasmic reticulum (ER) are eliminated by a process known as ER-associated degradation (ERAD), which starts with misfolded protein recognition, followed by ubiquitination, retrotranslocation to the cytosol, deglycosylation, and targeting to the proteasome for degradation. Actions of multisubunit protein machineries in the ER membrane integrate these steps. We hypothesized that regulation of the multisubunit machinery assembly is a mechanism by which ERAD activity is regulated. To test this hypothesis, we investigated the potential regulatory role of the small p97/VCP-interacting protein (SVIP) on the formation of the ERAD machinery that includes ubiquitin ligase gp78, AAA ATPase p97/VCP, and the putative channel Derlin1. We found that SVIP is anchored to microsomal membrane via myristoylation and co-fractionated with gp78, Derlin1, p97/VCP, and calnexin to the ER. Like gp78, SVIP also physically interacts with p97/VCP and Derlin1. Overexpression of SVIP blocks unassembled CD3δ from association with gp78 and p97/VCP, which is accompanied by decreases in CD3δ ubiquitination and degradation. Silencing SVIP expression markedly enhances the formation of gp78-p97/VCP-Derlin1 complex, which correlates with increased degradation of CD3δ and misfolded Z variant of α-1-antitrypsin, established substrates of gp78. These results suggest that SVIP is an endogenous inhibitor of ERAD that acts through regulating the assembly of the gp78-p97/VCP-Derlin1 complex.


The International Journal of Biochemistry & Cell Biology | 2010

Differential regulation of CFTRΔF508 degradation by ubiquitin ligases gp78 and Hrd1

Petek Ballar; Ahmet Uygar Örs; Hui Yang; Shengyun Fang

The most common mutation associated with cystic fibrosis is the deletion of phenylalanine 508 of cystic fibrosis transmembrane conductance regulator (CFTRDeltaF508). This mutation renders otherwise functional protein susceptible to ER-associated degradation (ERAD) and prevents CFTR from exiting the ER and trafficking to the plasma membrane. In this study, we demonstrate that RNAi-mediated silencing of gp78, an established ubiquitin ligase (E3) involved in ERAD, leads to accumulation of CFTRDeltaF508 protein in cells. gp78 facilitates the degradation of CFTRDeltaF508 by enhancing both its ubiquitination and interaction with p97/VCP. SVIP, which is the inhibitor of gp78, causes accumulation of CFTRDeltaF508. We showed that endogenous gp78 co-immunoprecipitates with Hrd1. Furthermore, the results indicate that silencing the expression of another ERAD E3, Hrd1, leads to stabilization of gp78 and decline in gp78 ubiquitination; thereby enhancing CFTRDeltaF508 degradation. The results support that gp78 is an E3 targeting CFTRDeltaF508 for degradation and Hrd1 inhibits CFTRDeltaF508 degradation by acting as an E3 for gp78.


The International Journal of Biochemistry & Cell Biology | 2011

Different p97/VCP complexes function in retrotranslocation step of mammalian Er-associated degradation (ERAD)

Petek Ballar; Aysun Pabuccuoglu; Fadime Aydin Kose

Studies in yeast indicate that three specialized endoplasmic reticulum-associated degradation (ERAD) pathways, namely ERAD-L, -M, or -C, dispose substrates with structural lesions in the lumenal, transmembrane, or cytosolic domains, respectively. The ubiquitin ligase (E3) Hrd1p and its cooperating partners are required for ERAD-L and -M pathways, whereas Doa10p complex is required for the ERAD-C pathway. We investigated these pathways in mammalian cells by assessing the requirements of the mammalian ERAD E3s, gp78 and Hrd1, in degradation of four substrates each with different type of structural lesions: CD3δ, Z-variant α1-antitrypsin, tyrosinase (C89R) and mutant cystic fibrosis transmembrane conductance regulator (CFTRΔF508). We demonstrated that tyrosinase (C89R) is a substrate for Hrd1 while all others are gp78 substrates. Knockdown of Hrd1 diminished gp78 substrate levels, but silencing of gp78 had no effect on Hrd1s substrate, suggesting that the functional interaction between Hrd1 and gp78 is unidirectional. Furthermore, while Ufd1 is dispensable for gp78-mediated ERAD, it is essential for Hrd1-mediated ERAD. Interestingly, Npl4 was found to be a key component for both pathways. These results suggest that the Hrd1-mediated ERAD requires a well-established retrotranslocation machinery, the p97/VCP-Ufd1-Npl4 complex, whereas the gp78 pathway needs only p97/VCP and Npl4. In addition, the three distinct ERAD pathways described in yeast may not be strictly conserved in mammalian cells as gp78 can function on three substrates with different structural lesions.


The International Journal of Biochemistry & Cell Biology | 2013

A unique IBMPFD-related P97/VCP mutation with differential binding pattern and subcellular localization.

Yalcin Erzurumlu; Fadime Aydin Kose; Oguz Gozen; Devrim Gozuacik; Eric A. Toth; Petek Ballar

p97/VCP is a hexameric AAA type ATPase that functions in a variety of cellular processes such as endoplasmic reticulum associated degradation (ERAD), organelle biogenesis, autophagy and cell-cycle regulation. Inclusion body myopathy associated with Paget disease of the bone and frontotemporal dementia (IBMPFD) is an autosomal dominant disorder which has been attributed to mutations in p97/VCP. Several missense mutations affecting twelve different amino acids have been identified in IBMPFD patients and some of them were suggested to be involved in the observed pathology. Here, we analyzed the effect of all twelve p97/VCP variants on ERAD substrates and their cofactor binding abilities. While all mutants cause ERAD substrate accumulation, P137L mutant p97/VCP differs from other IBMPFD mutants by having a unique solubility profile and subcellular localization. Intriguingly, although almost all mutants exhibit enhanced p47 and Ufd1-Npl4 binding, the P137L mutation completely abolishes p97/VCP interactions with Ufd1, Npl4 and p47, while retaining its gp78 binding. While recombinant R155C mutant protein consistently interacts with both Ufd1 and VIM of gp78, P137L mutant protein lost binding ability to Ufd1 but not to VIM in vitro. The differential impairments in p97/VCP interactions with its functional partners and function should help our understanding of the molecular pathogenesis of IBMPFD.


Methods of Molecular Biology | 2011

Site-Directed Mutagenesis

Patricia E. Carrigan; Petek Ballar; Sukru Tuzmen

The technique of site-directed mutagenesis has been used to characterize gene and protein structure-function relationships, protein-protein interactions, binding domains of proteins, or active sites of enzymes for the last three decades. In this technique, a nucleotide sequence of interest is experimentally altered using synthetic oligonucleotides. The most commonly used approach is to use an oligonucleotide that is complementary to part of a single-stranded DNA template, but containing an internal mismatch to direct the mutation. In addition to single point mutations, this approach may also be used to construct multiple mutations, insertions, or deletions. As a result of its broad applicability in disease gene characterization studies, numerous commercial kits are now available, making this technique quick, straightforward, and reliable. In this chapter, we detail the steps involved in site-directed mutagenesis and highlight the essentials of this versatile technique based upon our experience.


Journal of Biological Chemistry | 2011

Importin β Interacts with the Endoplasmic Reticulum-associated Degradation Machinery and Promotes Ubiquitination and Degradation of Mutant α1-Antitrypsin

Yongwang Zhong; Yang Wang; Hui Yang; Petek Ballar; Jin-gu Lee; Yihong Ye; Mervyn J. Monteiro; Shengyun Fang

The mechanism by which misfolded proteins in the endoplasmic reticulum (ER) are retrotranslocated to the cytosol for proteasomal degradation is still poorly understood. Here, we show that importin β, a well established nucleocytoplasmic transport protein, interacts with components of the retrotranslocation complex and promotes ER-associated degradation (ERAD). Knockdown of importin β specifically inhibited the degradation of misfolded ERAD substrates but did not affect turnover of non-ERAD proteasome substrates. Genetic studies and in vitro reconstitution assays demonstrate that importin β is critically required for ubiquitination of mutant α1-antitrypsin, a luminal ERAD substrate. Furthermore, we show that importin β cooperates with Ran GTPase to promote ubiquitination and proteasomal degradation of mutant α1-antitrypsin. These results establish an unanticipated role for importin β in ER protein quality control.


Biochemical Society Transactions | 2008

Regulation of ER-associated degradation via p97/VCP-interacting motif.

Petek Ballar; Shengyun Fang

p97/VCP (valosin-containing protein) is a cytosolic AAA (ATPase associated with various cellular activities) essential for retrotranslocation of misfolded proteins during ERAD [ER (endoplasmic reticulum)-associated degradation]. gp78, an ERAD ubiquitin ligase, is one of the p97/VCP recruitment proteins localized to the ER membrane. A newly identified VIM (p97/VCP-interacting motif) in gp78 has brought about novel insights into mechanisms of ERAD, such as the presence of a p97/VCP-dependent but Ufd1-independent retrotranslocation during gp78-mediated ERAD. Additionally, SVIP (small p97/VCP-interacting protein), which contains a VIM in its N-terminal region, negatively regulates ERAD by uncoupling p97/VCP and Derlin1 from gp78. Thus SVIP may protect cells from damage by extravagant ERAD.


Journal of Biological Chemistry | 2011

Importin β interacts with the ER-associated degradation machinery and promotes ubiquitination and degradation of mutant α1-antitrypsin

Yongwang Zhong; Yang Wang; Hui Yang; Petek Ballar; Jin-gu Lee; Yihong Ye; Mervyn J. Monteiro; Shengyun Fang

The mechanism by which misfolded proteins in the endoplasmic reticulum (ER) are retrotranslocated to the cytosol for proteasomal degradation is still poorly understood. Here, we show that importin β, a well established nucleocytoplasmic transport protein, interacts with components of the retrotranslocation complex and promotes ER-associated degradation (ERAD). Knockdown of importin β specifically inhibited the degradation of misfolded ERAD substrates but did not affect turnover of non-ERAD proteasome substrates. Genetic studies and in vitro reconstitution assays demonstrate that importin β is critically required for ubiquitination of mutant α1-antitrypsin, a luminal ERAD substrate. Furthermore, we show that importin β cooperates with Ran GTPase to promote ubiquitination and proteasomal degradation of mutant α1-antitrypsin. These results establish an unanticipated role for importin β in ER protein quality control.


PLOS ONE | 2011

SVIP induces localization of p97/VCP to the plasma and lysosomal membranes and regulates autophagy.

Yang Wang; Petek Ballar; Yongwang Zhong; Xuebao Zhang; Chao Liu; Ying-Jiu Zhang; Mervyn J. Monteiro; Jun Li; Shengyun Fang

The small p97/VCP-interacting protein (SVIP) functions as an inhibitor of the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. Here we show that overexpression of SVIP in HeLa cells leads to localization of p97/VCP at the plasma membrane, intracellular foci and juxtanuclear vacuoles. The p97/VCP-positive vacuolar structures colocalized or associated with LC3 and lamp1, suggesting that SVIP may regulate autophagy. In support of this possibility, knockdown of SVIP diminished, whereas overexpression of SVIP enhanced LC3 lipidation. Surprisingly, knockdown of SVIP reduced the levels of p62 protein at least partially through downregulation of its mRNA, which was accompanied by a decrease in starvation-induced formation of p62 bodies. Overexpression of SVIP, on the other hand, increased the levels of p62 protein and enhanced starvation-activated autophagy as well as promoted sequestration of polyubiquitinated proteins and p62 in autophagosomes. These results suggest that SVIP plays a regulatory role in p97 subcellular localization and is a novel regulator of autophagy.

Collaboration


Dive into the Petek Ballar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuxian Shen

Anhui Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Yang

University of Maryland Biotechnology Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoyan Zhong

University of Maryland Biotechnology Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge