Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter B. Rahl is active.

Publication


Featured researches published by Peter B. Rahl.


Cell | 2011

BET Bromodomain Inhibition as a Therapeutic Strategy to Target c-Myc

Jake Delmore; Ghayas C Issa; Madeleine E. Lemieux; Peter B. Rahl; Junwei Shi; Hannah M. Jacobs; Efstathios Kastritis; Timothy Gilpatrick; Ronald M. Paranal; Jun Qi; Marta Chesi; Anna C. Schinzel; Michael R. McKeown; Timothy P. Heffernan; Christopher R. Vakoc; P. Leif Bergsagel; Irene M. Ghobrial; Paul G. Richardson; Richard A. Young; William C. Hahn; Kenneth C. Anderson; Andrew L. Kung; James E. Bradner; Constantine S. Mitsiades

MYC contributes to the pathogenesis of a majority of human cancers, yet strategies to modulate the function of the c-Myc oncoprotein do not exist. Toward this objective, we have targeted MYC transcription by interfering with chromatin-dependent signal transduction to RNA polymerase, specifically by inhibiting the acetyl-lysine recognition domains (bromodomains) of putative coactivator proteins implicated in transcriptional initiation and elongation. Using a selective small-molecule bromodomain inhibitor, JQ1, we identify BET bromodomain proteins as regulatory factors for c-Myc. BET inhibition by JQ1 downregulates MYC transcription, followed by genome-wide downregulation of Myc-dependent target genes. In experimental models of multiple myeloma, a Myc-dependent hematologic malignancy, JQ1 produces a potent antiproliferative effect associated with cell-cycle arrest and cellular senescence. Efficacy of JQ1 in three murine models of multiple myeloma establishes the therapeutic rationale for BET bromodomain inhibition in this disease and other malignancies characterized by pathologic activation of c-Myc.


Nature | 2010

Mediator and cohesin connect gene expression and chromatin architecture.

Michael H. Kagey; Jamie J. Newman; Steve Bilodeau; Ye Zhan; David A. Orlando; Nynke L. van Berkum; Christopher C. Ebmeier; Jesse Goossens; Peter B. Rahl; Stuart S. Levine; Dylan J. Taatjes; Job Dekker; Richard A. Young

Transcription factors control cell-specific gene expression programs through interactions with diverse coactivators and the transcription apparatus. Gene activation may involve DNA loop formation between enhancer-bound transcription factors and the transcription apparatus at the core promoter, but this process is not well understood. Here we report that mediator and cohesin physically and functionally connect the enhancers and core promoters of active genes in murine embryonic stem cells. Mediator, a transcriptional coactivator, forms a complex with cohesin, which can form rings that connect two DNA segments. The cohesin-loading factor Nipbl is associated with mediator–cohesin complexes, providing a means to load cohesin at promoters. DNA looping is observed between the enhancers and promoters occupied by mediator and cohesin. Mediator and cohesin co-occupy different promoters in different cells, thus generating cell-type-specific DNA loops linked to the gene expression program of each cell.


Cell | 2010

c-Myc regulates transcriptional pause release.

Peter B. Rahl; Charles Y. Lin; Amy C. Seila; Ryan A. Flynn; Scott McCuine; Christopher B. Burge; Phillip A. Sharp; Richard A. Young

Recruitment of the RNA polymerase II (Pol II) transcription initiation apparatus to promoters by specific DNA-binding transcription factors is well recognized as a key regulatory step in gene expression. We report here that promoter-proximal pausing is a general feature of transcription by Pol II in mammalian cells and thus an additional step where regulation of gene expression occurs. This suggests that some transcription factors recruit the transcription apparatus to promoters, whereas others effect promoter-proximal pause release. Indeed, we find that the transcription factor c-Myc, a key regulator of cellular proliferation, plays a major role in Pol II pause release rather than Pol II recruitment at its target genes. We discuss the implications of these results for the role of c-Myc amplification in human cancer.


Science | 2008

Divergent Transcription from Active Promoters

Amy C. Seila; J. Mauro Calabrese; Stuart S. Levine; Gene W. Yeo; Peter B. Rahl; Ryan A. Flynn; Richard A. Young; Phillip A. Sharp

Transcription initiation by RNA polymerase II (RNAPII) is thought to occur unidirectionally from most genes. Here, we present evidence of widespread divergent transcription at protein-encoding gene promoters. Transcription start site–associated RNAs (TSSa-RNAs) nonrandomly flank active promoters, with peaks of antisense and sense short RNAs at 250 nucleotides upstream and 50 nucleotides downstream of TSSs, respectively. Northern analysis shows that TSSa-RNAs are subsets of an RNA population 20 to 90 nucleotides in length. Promoter-associated RNAPII and H3K4-trimethylated histones, transcription initiation hallmarks, colocalize at sense and antisense TSSa-RNA positions; however, H3K79-dimethylated histones, characteristic of elongating RNAPII, are only present downstream of TSSs. These results suggest that divergent transcription over short distances is common for active promoters and may help promoter regions maintain a state poised for subsequent regulation.


Cell | 2012

Revisiting global gene expression analysis.

Jakob Lovén; David A. Orlando; Alla A. Sigova; Charles Y. Lin; Peter B. Rahl; Christopher B. Burge; David Levens; Tong Ihn Lee; Richard A. Young

Gene expression analysis is a widely used and powerful method for investigating the transcriptional behavior of biological systems, for classifying cell states in disease, and for many other purposes. Recent studies indicate that common assumptions currently embedded in experimental and analytical practices can lead to misinterpretation of global gene expression data. We discuss these assumptions and describe solutions that should minimize erroneous interpretation of gene expression data from multiple analysis platforms.


Cancer Cell | 2013

Discovery and Characterization of Super-Enhancer Associated Dependencies in Diffuse Large B-Cell Lymphoma

Bjoern Chapuy; Michael R. McKeown; Charles Y. Lin; Stefano Monti; Margaretha G. M. Roemer; Jun Qi; Peter B. Rahl; Heather Sun; Kelly T. Yeda; John G. Doench; Elaine Reichert; Andrew L. Kung; Scott J. Rodig; Richard A. Young; Margaret A. Shipp; James E. Bradner

Diffuse large B cell lymphoma (DLBCL) is a biologically heterogeneous and clinically aggressive disease. Here, we explore the role of bromodomain and extra-terminal domain (BET) proteins in DLBCL, using integrative chemical genetics and functional epigenomics. We observe highly asymmetric loading of bromodomain 4 (BRD4) at enhancers, with approximately 33% of all BRD4 localizing to enhancers at 1.6% of occupied genes. These super-enhancers prove particularly sensitive to bromodomain inhibition, explaining the selective effect of BET inhibitors on oncogenic and lineage-specific transcriptional circuits. Functional study of genes marked by super-enhancers identifies DLBCLs dependent on OCA-B and suggests a strategy for discovering unrecognized cancer dependencies. Translational studies performed on a comprehensive panel of DLBCLs establish a therapeutic rationale for evaluating BET inhibitors in this disease.


Immunity | 2014

Small molecule RORγt antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms

Sheng Xiao; Nir Yosef; Jianfei Yang; Yonghui Wang; Ling Zhou; Chen Zhu; Chuan Wu; Erkan Baloglu; Darby Schmidt; Radha Ramesh; Mercedes Lobera; Mark S. Sundrud; Pei-Yun Tsai; Zhijun Xiang; Jinsong Wang; Yan Xu; Xichen Lin; Karsten Kretschmer; Peter B. Rahl; Richard A. Young; Zhong Zhong; David A. Hafler; Aviv Regev; Shomir Ghosh; Alexander Marson; Vijay K. Kuchroo

We identified three retinoid-related orphan receptor gamma t (RORγt)-specific inhibitors that suppress T helper 17 (Th17) cell responses, including Th17-cell-mediated autoimmune disease. We systemically characterized RORγt binding in the presence and absence of drugs with corresponding whole-genome transcriptome sequencing. RORγt acts as a direct activator of Th17 cell signature genes and a direct repressor of signature genes from other T cell lineages; its strongest transcriptional effects are on cis-regulatory sites containing the RORα binding motif. RORγt is central in a densely interconnected regulatory network that shapes the balance of T cell differentiation. Here, the three inhibitors modulated the RORγt-dependent transcriptional network to varying extents and through distinct mechanisms. Whereas one inhibitor displaced RORγt from its target loci, the other two inhibitors affected transcription predominantly without removing DNA binding. Our work illustrates the power of a system-scale analysis of transcriptional regulation to characterize potential therapeutic compounds that inhibit pathogenic Th17 cells and suppress autoimmunity.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells

Matthieu Giraud; Hideyuki Yoshida; Jakub Abramson; Peter B. Rahl; Richard A. Young; Diane Mathis; Christophe Benoist

Aire is a transcriptional regulator that induces expression of peripheral tissue antigens (PTA) in thymic medullary epithelial cells (MECs), driving immunological self-tolerance in differentiating T cells. To elucidate its mechanistic pathways, we examined its transcriptional impact in MECs in vivo by microarray analysis with mRNA-spanning probes. This analysis revealed initiation of Aire-activated genes to be comparable in Aire-deficient and wild-type MECs, but with a block to elongation after 50–100 bp in the absence of Aire, suggesting activation by release of stalled polymerases by Aire. In contrast, patterns of activation by transcription factors such as Klf4 were consistent with regulation of initiation. Mapping of Aire and RNA polymerase-II (Pol-II) by ChIP and high-throughput sequencing (ChIP-seq) revealed that Aire bound all Pol-II–rich transcriptional start sites (TSS), irrespective of its eventual effect. However, the genes it preferentially activated were characterized by a relative surfeit of stalled polymerases at the TSS, which resolved once Aire was introduced into cells. Thus, transcript mapping and ChIP-seq data indicate that Aire activates ectopic transcription not through specific recognition of PTA gene promoters but by releasing stalled polymerases.


Cold Spring Harbor Perspectives in Medicine | 2014

MYC and Transcription Elongation

Peter B. Rahl; Richard A. Young

Most transcription factors specify the subset of genes that will be actively transcribed in the cell by stimulating transcription initiation at these genes, but MYC has a fundamentally different role. MYC binds E-box sites in the promoters of active genes and stimulates recruitment of the elongation factor P-TEFb and thus transcription elongation. Consequently, rather than specifying the set of genes that will be transcribed in any particular cell, MYCs predominant role is to increase the production of transcripts from active genes. This increase in the transcriptional output of the cells existing gene expression program, called transcriptional amplification, has a profound effect on proliferation and other behaviors of a broad range of cells. Transcriptional amplification may reduce rate-limiting constraints for tumor cell proliferation and explain MYCs broad oncogenic activity among diverse tissues.


Genes & Development | 2013

Let-7 represses Nr6a1 and a mid-gestation developmental program in adult fibroblasts

Allan M. Gurtan; Arvind Ravi; Peter B. Rahl; Andrew D. Bosson; Courtney K. JnBaptiste; Arjun Bhutkar; Charles A. Whittaker; Richard A. Young; Phillip A. Sharp

MicroRNAs (miRNAs) are critical to proliferation, differentiation, and development. Here, we characterize gene expression in murine Dicer-null adult mesenchymal stem cell lines, a fibroblast cell type. Loss of Dicer leads to derepression of let-7 targets at levels that exceed 10-fold to 100-fold with increases in transcription. Direct and indirect targets of this miRNA belong to a mid-gestation embryonic program that encompasses known oncofetal genes as well as oncogenes not previously associated with an embryonic state. Surprisingly, this mid-gestation program represents a distinct period that occurs between the pluripotent state of the inner cell mass at embryonic day 3.5 (E3.5) and the induction of let-7 upon differentiation at E10.5. Within this mid-gestation program, we characterize the let-7 target Nr6a1, an embryonic transcriptional repressor that regulates gene expression in adult fibroblasts following miRNA loss. In total, let-7 is required for the continual suppression of embryonic gene expression in adult cells, a mechanism that may underlie its tumor-suppressive function.

Collaboration


Dive into the Peter B. Rahl's collaboration.

Top Co-Authors

Avatar

Richard A. Young

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James E. Bradner

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jakob Lovén

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jun Qi

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christopher B. Burge

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

David A. Orlando

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Matthew G. Guenther

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Tong Ihn Lee

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Andrew L. Kung

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge