Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tong Ihn Lee is active.

Publication


Featured researches published by Tong Ihn Lee.


Cell | 2005

Core transcriptional regulatory circuitry in human embryonic stem cells.

Laurie A. Boyer; Tong Ihn Lee; Megan F. Cole; Sarah E. Johnstone; Stuart S. Levine; Jacob P. Zucker; Matthew G. Guenther; Roshan M. Kumar; Heather L. Murray; Richard G. Jenner; David K. Gifford; Douglas A. Melton; Rudolf Jaenisch; Richard A. Young

The transcription factors OCT4, SOX2, and NANOG have essential roles in early development and are required for the propagation of undifferentiated embryonic stem (ES) cells in culture. To gain insights into transcriptional regulation of human ES cells, we have identified OCT4, SOX2, and NANOG target genes using genome-scale location analysis. We found, surprisingly, that OCT4, SOX2, and NANOG co-occupy a substantial portion of their target genes. These target genes frequently encode transcription factors, many of which are developmentally important homeodomain proteins. Our data also indicate that OCT4, SOX2, and NANOG collaborate to form regulatory circuitry consisting of autoregulatory and feedforward loops. These results provide new insights into the transcriptional regulation of stem cells and reveal how OCT4, SOX2, and NANOG contribute to pluripotency and self-renewal.


Nature | 2006

Polycomb complexes repress developmental regulators in murine embryonic stem cells.

Laurie A. Boyer; Kathrin Plath; Julia Zeitlinger; Tobias Brambrink; Lea Ann Medeiros; Tong Ihn Lee; Stuart S. Levine; Marius Wernig; Adriana Tajonar; Mridula K. Ray; George W. Bell; Arie P. Otte; Miguel Vidal; David K. Gifford; Richard A. Young; Rudolf Jaenisch

The mechanisms by which embryonic stem (ES) cells self-renew while maintaining the ability to differentiate into virtually all adult cell types are not well understood. Polycomb group (PcG) proteins are transcriptional repressors that help to maintain cellular identity during metazoan development by epigenetic modification of chromatin structure. PcG proteins have essential roles in early embryonic development and have been implicated in ES cell pluripotency, but few of their target genes are known in mammals. Here we show that PcG proteins directly repress a large cohort of developmental regulators in murine ES cells, the expression of which would otherwise promote differentiation. Using genome-wide location analysis in murine ES cells, we found that the Polycomb repressive complexes PRC1 and PRC2 co-occupied 512 genes, many of which encode transcription factors with important roles in development. All of the co-occupied genes contained modified nucleosomes (trimethylated Lys 27 on histone H3). Consistent with a causal role in gene silencing in ES cells, PcG target genes were de-repressed in cells deficient for the PRC2 component Eed, and were preferentially activated on induction of differentiation. Our results indicate that dynamic repression of developmental pathways by Polycomb complexes may be required for maintaining ES cell pluripotency and plasticity during embryonic development.


Nature | 2004

Transcriptional regulatory code of a eukaryotic genome

Christopher T. Harbison; D. Benjamin Gordon; Tong Ihn Lee; Nicola J. Rinaldi; Kenzie D. MacIsaac; Timothy Danford; Nancy M. Hannett; Jean-Bosco Tagne; David B. Reynolds; Jane Yoo; Ezra G. Jennings; Julia Zeitlinger; Dmitry K. Pokholok; Manolis Kellis; P. Alex Rolfe; Ken T. Takusagawa; Eric S. Lander; David K. Gifford; Ernest Fraenkel; Richard A. Young

DNA-binding transcriptional regulators interpret the genomes regulatory code by binding to specific sequences to induce or repress gene expression. Comparative genomics has recently been used to identify potential cis-regulatory sequences within the yeast genome on the basis of phylogenetic conservation, but this information alone does not reveal if or when transcriptional regulators occupy these binding sites. We have constructed an initial map of yeasts transcriptional regulatory code by identifying the sequence elements that are bound by regulators under various conditions and that are conserved among Saccharomyces species. The organization of regulatory elements in promoters and the environment-dependent use of these elements by regulators are discussed. We find that environment-specific use of regulatory elements predicts mechanistic models for the function of a large population of yeasts transcriptional regulators.


Cell | 2006

Control of Developmental Regulators by Polycomb in Human Embryonic Stem Cells

Tong Ihn Lee; Richard G. Jenner; Laurie A. Boyer; Matthew G. Guenther; Stuart S. Levine; Roshan M. Kumar; Brett Chevalier; Sarah E. Johnstone; Megan F. Cole; Kyoichi Isono; Haruhiko Koseki; Takuya Fuchikami; Kuniya Abe; Heather L. Murray; Jacob P. Zucker; Bingbing Yuan; George W. Bell; Elizabeth Herbolsheimer; Nancy M. Hannett; Kaiming Sun; Duncan T. Odom; Arie P. Otte; Thomas L. Volkert; David P. Bartel; Douglas A. Melton; David K. Gifford; Rudolf Jaenisch; Richard A. Young

Polycomb group proteins are essential for early development in metazoans, but their contributions to human development are not well understood. We have mapped the Polycomb Repressive Complex 2 (PRC2) subunit SUZ12 across the entire nonrepeat portion of the genome in human embryonic stem (ES) cells. We found that SUZ12 is distributed across large portions of over two hundred genes encoding key developmental regulators. These genes are occupied by nucleosomes trimethylated at histone H3K27, are transcriptionally repressed, and contain some of the most highly conserved noncoding elements in the genome. We found that PRC2 target genes are preferentially activated during ES cell differentiation and that the ES cell regulators OCT4, SOX2, and NANOG cooccupy a significant subset of these genes. These results indicate that PRC2 occupies a special set of developmental genes in ES cells that must be repressed to maintain pluripotency and that are poised for activation during ES cell differentiation.


Cell | 1998

Dissecting the Regulatory Circuitry of a Eukaryotic Genome

Frank C. P. Holstege; Ezra G. Jennings; John J. Wyrick; Tong Ihn Lee; Christoph J. Hengartner; Michael R. Green; Todd R. Golub; Eric S. Lander; Richard A. Young

Genome-wide expression analysis was used to identify genes whose expression depends on the functions of key components of the transcription initiation machinery in yeast. Components of the RNA polymerase II holoenzyme, the general transcription factor TFIID, and the SAGA chromatin modification complex were found to have roles in expression of distinct sets of genes. The results reveal an unanticipated level of regulation which is superimposed on that due to gene-specific transcription factors, a novel mechanism for coordinate regulation of specific sets of genes when cells encounter limiting nutrients, and evidence that the ultimate targets of signal transduction pathways can be identified within the initiation apparatus.


Cell | 2005

Genome-wide Map of Nucleosome Acetylation and Methylation in Yeast

Dmitry K. Pokholok; Christopher T. Harbison; Stuart S. Levine; Megan F. Cole; Nancy M. Hannett; Tong Ihn Lee; George W. Bell; Kimberly Walker; P. Alex Rolfe; Elizabeth Herbolsheimer; Julia Zeitlinger; Fran Lewitter; David K. Gifford; Richard A. Young

Eukaryotic genomes are packaged into nucleosomes whose position and chemical modification state can profoundly influence regulation of gene expression. We profiled nucleosome modifications across the yeast genome using chromatin immunoprecipitation coupled with DNA microarrays to produce high-resolution genome-wide maps of histone acetylation and methylation. These maps take into account changes in nucleosome occupancy at actively transcribed genes and, in doing so, revise previous assessments of the modifications associated with gene expression. Both acetylation and methylation of histones are associated with transcriptional activity, but the former occurs predominantly at the beginning of genes, whereas the latter can occur throughout transcribed regions. Most notably, specific methylation events are associated with the beginning, middle, and end of actively transcribed genes. These maps provide the foundation for further understanding the roles of chromatin in gene expression and genome maintenance.


Cell | 2013

Super-Enhancers in the Control of Cell Identity and Disease

Brian J. Abraham; Tong Ihn Lee; Ashley Lau; Violaine Saint-André; Alla A. Sigova; Heather A. Hoke; Richard A. Young

Super-enhancers are large clusters of transcriptional enhancers that drive expression of genes that define cell identity. Improved understanding of the roles that super-enhancers play in biology would be afforded by knowing the constellation of factors that constitute these domains and by identifying super-enhancers across the spectrum of human cell types. We describe here the population of transcription factors, cofactors, chromatin regulators, and transcription apparatus occupying super-enhancers in embryonic stem cells and evidence that super-enhancers are highly transcribed. We produce a catalog of super-enhancers in a broad range of human cell types and find that super-enhancers associate with genes that control and define the biology of these cells. Interestingly, disease-associated variation is especially enriched in the super-enhancers of disease-relevant cell types. Furthermore, we find that cancer cells generate super-enhancers at oncogenes and other genes important in tumor pathogenesis. Thus, super-enhancers play key roles in human cell identity in health and in disease.


Nature Protocols | 2006

Chromatin immunoprecipitation and microarray-based analysis of protein location

Tong Ihn Lee; Sarah E. Johnstone; Richard A. Young

Genome-wide location analysis, also known as ChIP-Chip, combines chromatin immunoprecipitation and DNA microarray analysis to identify protein-DNA interactions that occur in living cells. Protein-DNA interactions are captured in vivo by chemical crosslinking. Cell lysis, DNA fragmentation and immunoaffinity purification of the desired protein will co-purify DNA fragments that are associated with that protein. The enriched DNA population is then labeled, combined with a differentially labeled reference sample and applied to DNA microarrays to detect enriched signals. Various computational and bioinformatic approaches are then applied to normalize the enriched and reference channels, to connect signals to the portions of the genome that are represented on the DNA microarrays, to provide confidence metrics and to generate maps of protein-genome occupancy. Here, we describe the experimental protocols that we use from crosslinking of cells to hybridization of labeled material, together with insights into the aspects of these protocols that influence the results. These protocols require approximately 1 week to complete once sufficient numbers of cells have been obtained, and have been used to produce robust, high-quality ChIP-chip results in many different cell and tissue types.


Cell | 2013

Transcriptional Regulation and Its Misregulation in Disease

Tong Ihn Lee; Richard A. Young

The gene expression programs that establish and maintain specific cell states in humans are controlled by thousands of transcription factors, cofactors, and chromatin regulators. Misregulation of these gene expression programs can cause a broad range of diseases. Here, we review recent advances in our understanding of transcriptional regulation and discuss how these have provided new insights into transcriptional misregulation in disease.


Nature | 2000

Redundant roles for the TFIID and SAGA complexes in global transcription

Tong Ihn Lee; Helen C. Causton; Frank C. P. Holstege; Wu-Cheng Shen; Nancy M. Hannett; Ezra G. Jennings; Fred Winston; Michael R. Green; Richard A. Young

The transcription factors TFIID and SAGA are multi-subunit complexes involved in transcription by RNA polymerase II. TFIID and SAGA contain common TATA-binding protein (TBP)-associated factor (TAFII) subunits and each complex contains a subunit with histone acetyltransferase activity. These observations have raised questions about whether the functions of the two complexes in vivo are unique or overlapping. Here we use genome-wide expression analysis to investigate how expression of the yeast genome depends on both shared and unique subunits of these two complexes. We find that expression of most genes requires one or more of the common TAF II subunits, indicating that the functions of TFIID and SAGA are widely required for gene expression. Among the subunits shared by TFIID and SAGA are three histone-like TAFIIs, which have been proposed to form a sub-complex and mediate a common function in global transcription. Unexpectedly, we find that the histone-like TAFIIs have distinct roles in expression of the yeast genome. Most importantly, we show that the histone acetylase components of TFIID and SAGA (TAFII145 and Gcn5) are functionally redundant, indicating that expression of a large fraction of yeast genes can be regulated through the action of either complex.

Collaboration


Dive into the Tong Ihn Lee's collaboration.

Top Co-Authors

Avatar

Richard A. Young

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Brian J. Abraham

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Abraham S. Weintraub

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David K. Gifford

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ezra G. Jennings

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nancy M. Hannett

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Rudolf Jaenisch

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alla A. Sigova

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge