Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Bechtold is active.

Publication


Featured researches published by Peter Bechtold.


Quarterly Journal of the Royal Meteorological Society | 2002

Intercomparison and evaluation of cumulus parametrizations under summertime midlatitude continental conditions

Shaocheng Xie; Kuan Man Xu; Richard T. Cederwall; Peter Bechtold; Anthony D. Del Genio; Stephen A. Klein; Douglas G. Cripe; Steven J. Ghan; David Gregory; Sam F. Iacobellis; Steven K. Krueger; Ulrike Lohmann; Jon Petch; David A. Randall; Leon D. Rotstayn; Richard C. J. Somerville; Yugesh C. Sud; Knut von Salzen; G. K. Walker; Audrey B. Wolf; J. John Yio; Guang J. Zhang; Minghua Zhang

This study reports the Single-Column Model (SCM) part of the Atmospheric Radiation Measurement (ARM)/the Global Energy and Water Cycle Experiment (GEWEX) Cloud System Study (GCSS) joint SCM and Cloud-Resolving Model (CRM) Case 3 intercomparison study, with a focus on evaluation of cumulus parametrizations used in SCMs. Fifteen SCMs are evaluated under summertime midlatitude continental conditions using data collected at the ARM Southern Great Plains site during the summer 1997 Intensive Observing Period. Results from ten CRMs are also used to diagnose problems in the SCMs. It is shown that most SCMs can generally capture well the convective events that were well-developed within the SCM domain, while most of them have difficulties in simulating the occurrence of those convective events that only occurred within a small part of the domain. All models significantly underestimate the surface stratiform precipitation. A third of them produce large errors in surface precipitation and thermodynamic structures. Deficiencies in convective triggering mechanisms are thought to be one of the major reasons. Using a triggering mechanism that is based on the vertical integral of parcel buoyant energy without additional appropriate constraints results in overactive convection, which in turn leads to large systematic warm/dry biases in the troposphere. It is also shown that a non-penetrative convection scheme can underestimate the depth of instability for midlatitude convection, which leads to large systematic cold/moist biases in the troposphere. SCMs agree well quantitatively with CRMs in the updraught mass fluxes, while most models significantly underestimate the downdraught mass fluxes. Neglect of mesoscale updraught and downdraught mass fluxes in the SCMs contributes considerably to the discrepancies between the SCMs and the CRMs. In addition, uncertainties in the diagnosed mass fluxes in the CRMs and deficiencies with cumulus parametrizations are not negligible. Similar results are obtained in the sensitivity tests when different forcing approaches are used. Finally, sensitivity tests from an SCM indicate that its simulations can be greatly improved when its triggering mechanism and closure assumption are improved.


Boundary-Layer Meteorology | 1999

A GCSS Boundary-Layer Cloud Model Intercomparison Study Of The First Astex Lagrangian Experiment

Christopher S. Bretherton; Steven K. Krueger; Matthew C. Wyant; Peter Bechtold; Erik van Meijgaard; Bjorn Stevens; João Teixeira

Three single-column models (all with an explicit liquid water budget and compara-tively high vertical resolution) and three two-dimensional eddy-resolving models (including one with bin-resolved microphysics) are compared with observations from the first ASTEX Lagrangian experiment. This intercomparison was a part of the second GCSS boundary-layer cloud modelling workshop in August 1995.In the air column tracked during the first ASTEX Lagrangian experiment, a shallow subtropical drizzling stratocumulus-capped marine boundary layer deepens after two days into a cumulus capped boundary layer with patchy stratocumulus. The models are forced with time varying boundary conditions at the sea-surface and the capping inversion to simulate the changing environment of the air column.The models all predict the observed deepening and decoupling of the boundary layer quite well, with cumulus cloud evolution and thinning of the overlying stratocumulus. Thus these models all appear capable of predicting transitions between cloud and boundary-layer types with some skill. The models also produce realistic drizzle rates, but there are substantial quantitative differences in the cloud cover and liquid water path between models. The differences between the eddy-resolving model results are nearly as large as between the single column model results. The eddy resolving models give a more detailed picture of the boundary-layer evolution than the single-column models, but are still sensitive to the choice of microphysical and radiative parameterizations, sub-grid-scale turbulence models, and probably model resolution and dimensionality. One important example of the differences seen in these parameterizations is the absorption of solar radiation in a specified cloud layer, which varied by a factor of four between the model radiation parameterizations.


Bulletin of the American Meteorological Society | 2013

Characteristics of Occasional Poor Medium-Range Weather Forecasts for Europe

M. J. Rodwell; Linus Magnusson; Peter Bauer; Peter Bechtold; Massimo Bonavita; Carla Cardinali; Michail Diamantakis; Paul Earnshaw; Antonio Garcia-Mendez; Lars Isaksen; Erland Källén; Daniel Klocke; Philippe Lopez; Tony McNally; Anders Persson; Fernando Prates; Nils P. Wedi

Medium-range weather prediction has become more skillful over recent decades, but forecast centers still suffer from occasional very poor forecasts, which are often referred to as “dropouts” or “busts.” This study focuses on European Centre for Medium-Range Weather Forecasts (ECMWF) day-6 forecasts for Europe. Although busts are defined by gross scores, bust composites reveal a coherent “Rex type” blocking situation, with a high over northern Europe and a low over the Mediterranean. Initial conditions for these busts also reveal a coherent flow, but this is located over North America and involves a trough over the Rockies, with high convective available potential energy (CAPE) to its east. This flow type occurs in spring and is often associated with a Rossby wave train that has crossed the Pacific. A composite on this initial flow type displays enhanced day-6 random forecast errors and some-what enhanced ensemble forecast spread, indicating reduced inherent predictability. Mesoscale convective systems, as...


Journal of the Atmospheric Sciences | 1992

A Model of Marine Boundary-Layer Cloudiness for Mesoscale Applications

Peter Bechtold; Jean Pierre Pinty; Charles Fravalo

Abstract A one-dimensional version of a multilevel mesoscale model is used to represent the cloud-topped boundary layer (CTBL). Turbulent exchanges are parameterized with a prognostic equation for the turbulent kinetic energy and an improved length-scale formulation. Furthermore, the scheme is extended to give a statistical description of the subgrid-scale condensation with a one-and-a-half-order closure.Several observed reference cases are simulated in order to test the model against observational data and results obtained with a higher-order turbulence model. The latter one is used as a powerful approach for testing the closure of the second-order moments involved in the partial cloudiness scheme. Two of the reference cases are extracted from stratocumulus (Sc) observations off the coast of the United Kingdom with a purely buoyancy-driven and a purely shear-driven CTBL, respectively. The third experiment tries to reproduce a case of Californian Sc clouds where both turbulent effects are important. Final...


Journal of the Atmospheric Sciences | 2002

A Simple Cloud Parameterization Derived from Cloud Resolving Model Data: Diagnostic and Prognostic Applications

Jean-Pierre Chaboureau; Peter Bechtold

A simple statistical parameterization of cloud water‐related variables that has been originally developed for nonprecipitating boundary layer clouds is extended for all cloud types including deep precipitating convection. Based on three-dimensional cloud resolving model (CRM) simulations of observed tropical maritime and continental midlatitude convective periods, expressions for the partial cloudiness and the cloud water content are derived, which are a function of the normalized saturation deficitQ1. It turns out that these relations are equivalent to boundary layer cloud relations described earlier, therefore allowing for a general description of subgrid-scale clouds. The usefulness of the cloud relations is assessed by applying them diagnostically and prognostically in a mesoscale model for a midlatitude cyclone case and a subtropical case, and comparing the simulated cloud fields to satellite observations and to reference simulations with an explicit microphysical scheme. The comparison uses a model-to-satellite approach where synthetic radiances are computed from the meteorological fields and are compared to Meteosat satellite observations both in the visible and the thermal infrared spectral channels. The impact of the statistical cloud scheme is most pronounced for shallow and deep convective cloud fields (where Q1 , 0), provided that the host models convection parameterization is able to correctly represent the ensemble average water vapor profile in the troposphere. The scheme significantly reduces the biases in the infrared and especially shortwave spectral range with respect to the explicit microphysical scheme. Furthermore, it produces more realistic (smooth) horizontal and vertical condensate distributions in both diagnostic or prognostic applications showing the potential use of this simple parameterization in larger-scale models.


Monthly Weather Review | 2014

Global versus Local MJO Forecast Skill of the ECMWF Model during DYNAMO

Jian Ling; Peter Bauer; Peter Bechtold; Anton Beljaars; Richard M. Forbes; F. Vitart; Marcela Ulate; Chidong Zhang

AbstractThis study introduces a concept of global versus local forecast skill of the Madden–Julian oscillation (MJO). The global skill, measured by a commonly used MJO index [the Real-time Multivariate MJO (RMM)], evaluates the model’s capability of forecasting global patterns of the MJO, with an emphasis on the zonal wind fields. The local skill is measured by a method of tracking the eastward propagation of MJO precipitation. It provides quantitative information of the strength, propagation speed, and timing of MJO precipitation in a given region, such as the Indian Ocean. Both global and local MJO forecast skills are assessed for ECMWF forecasts of three MJO events during the 2011–12 Dynamics of the MJO (DYNAMO) field campaign. Characteristics of error growth differ substantially between global and local MJO forecast skills, and between the three MJO quantities (strength, speed, and timing) of the local skill measure. They all vary considerably among the three MJO events. Deterioration in global foreca...


Journal of the Atmospheric Sciences | 2013

Large-Scale Distinctions between MJO and Non-MJO Convective Initiation over the Tropical Indian Ocean

Jian Ling; Chidong Zhang; Peter Bechtold

AbstractIn this study, the authors seek large-scale signals that may distinguish MJO from non-MJO convective events before they start over the Indian Ocean. Three such signals were found. Low-level easterly anomalies extend from the surface to the midtroposphere and move from the western to eastern Indian Ocean. Surface pressure anomalies exhibit a zonal structure of wavenumber 1 with an equatorial low-pressure surge penetrating eastward from Africa through the Indian Ocean and reaching the Maritime Continent. Negative temperature anomalies in the middle to upper troposphere start over the Indian Ocean and move eastward. All of them emerge 20 days before convective initiation of the MJO and move eastward at speeds close to that of the MJO without any direct connection to MJO convection. They are not obviously related to the extratropics in any discernible way or any preceding MJO events. They are absent in non-MJO convective events. These signals provide useful information for forecasting MJO initiation o...


Journal of Advances in Modeling Earth Systems | 2016

Impacts of parameterized orographic drag on the Northern Hemisphere winter circulation

Irina Sandu; Peter Bechtold; Anton Beljaars; Alessio Bozzo; Felix Pithan; Theodore G. Shepherd; Ayrton Zadra

Abstract A recent intercomparison exercise proposed by the Working Group for Numerical Experimentation (WGNE) revealed that the parameterized, or unresolved, surface stress in weather forecast models is highly model‐dependent, especially over orography. Models of comparable resolution differ over land by as much as 20% in zonal mean total subgrid surface stress (τtot). The way τtot is partitioned between the different parameterizations is also model‐dependent. In this study, we simulated in a particular model an increase in τtot comparable with the spread found in the WGNE intercomparison. This increase was simulated in two ways, namely by increasing independently the contributions to τtot of the turbulent orographic form drag scheme (TOFD) and of the orographic low‐level blocking scheme (BLOCK). Increasing the parameterized orographic drag leads to significant changes in surface pressure, zonal wind and temperature in the Northern Hemisphere during winter both in 10 day weather forecasts and in seasonal integrations. However, the magnitude of these changes in circulation strongly depends on which scheme is modified. In 10 day forecasts, stronger changes are found when the TOFD stress is increased, while on seasonal time scales the effects are of comparable magnitude, although different in detail. At these time scales, the BLOCK scheme affects the lower stratosphere winds through changes in the resolved planetary waves which are associated with surface impacts, while the TOFD effects are mostly limited to the lower troposphere. The partitioning of τtot between the two schemes appears to play an important role at all time scales.


Journal of the Atmospheric Sciences | 2004

Estimations of Mass Fluxes for Cumulus Parameterizations from High-Resolution Spatial Data

Jun-Ichi Yano; Françoise Guichard; Jean-Philippe Lafore; Jean-Luc Redelsperger; Peter Bechtold

Abstract The core of the mass flux formulation, on which the majority of the current cumulus parameterizations are based, is to transport physical variables by the so-called mass flux for individual physical components, such as convective updrafts, downdrafts, and environment. These parameterizations use horizontal means over the subdomains occupied by these physical components to define the mass fluxes and transported variables. However, evaluations of the mass flux formulation against high-resolution spatial data obtained from explicit numerical models reveal that it substantially underestimates vertical transport of heat, moisture, and momentum by deep convection. The present paper proposes an alternative approach, in which the effective values weighted toward extreme values are used both for the mass flux and the transported variable to obtain an accurate estimate of vertical transport. Statistically, the distribution of convective variables is so widely distributed within individual subdomains that t...


Journal of the Atmospheric Sciences | 1998

Organization and Representation of Boundary Layer Clouds

Peter Bechtold; Pier Siebesma

Abstract This study is intended to summarize and to simplify the complicated processes in boundary layer cloud regimes using a single parameter, Q1, the normalized saturation deficit. With the aid of large eddy simulation (LES) data from different boundary layer cloud regimes it is illustrated i) that the in-cloud buoyancy flux is maximized when the fractional cloudiness approaches zero; ii) that the ensemble average buoyancy flux possesses two maxima, one for the trade wind cumulus case and one for the stratocumulus case; and iii) that the preferred mode for boundary layer clouds is either small cumuli or high values of cloudiness, and that cloudiness transitions from one regime to the other are difficult to represent numerically as in the transition regime the cloud-water-related variables are very parameter sensitive. In addition, the importance of the contribution of the liquid water flux to the in-cloud and total buoyancy flux is outlined, and simple analytical and empirical methods are presented to ...

Collaboration


Dive into the Peter Bechtold's collaboration.

Top Co-Authors

Avatar

Anton Beljaars

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

Gianpaolo Balsamo

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. J. Rodwell

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

F. Vitart

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

Irina Sandu

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Leutbecher

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

Nils P. Wedi

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

Peter Bauer

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Researchain Logo
Decentralizing Knowledge