Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Bermel is active.

Publication


Featured researches published by Peter Bermel.


Optics Express | 2007

Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals

Peter Bermel; Chiyan Luo; Lirong Zeng; Lionel C. Kimerling; John D. Joannopoulos

Most photovoltaic (solar) cells are made from crystalline silicon (c-Si), which has an indirect band gap. This gives rise to weak absorption of one-third of usable solar photons. Therefore, improved light trapping schemes are needed, particularly for c-Si thin film solar cells. Here, a photonic crystal-based light-trapping approach is analyzed and compared to previous approaches. For a solar cell made of a 2 mum thin film of c-Si and a 6 bilayer distributed Bragg reflector (DBR) in the back, power generation can be enhanced by a relative amount of 24.0% by adding a 1D grating, 26.3% by replacing the DBR with a six-period triangular photonic crystal made of air holes in silicon, 31.3% by a DBR plus 2D grating, and 26.5% by replacing it with an eight-period inverse opal photonic crystal.


Optics Letters | 2006

Improving accuracy by subpixel smoothing in the finite-difference time domain

Ardavan Farjadpour; David Roundy; Alejandro W. Rodriguez; Mihai Ibanescu; Peter Bermel; John D. Joannopoulos; Steven G. Johnson; Geoffrey W. Burr

Finite-difference time-domain (FDTD) methods suffer from reduced accuracy when modeling discontinuous dielectric materials, due to the inhererent discretization (pixelization). We show that accuracy can be significantly improved by using a subpixel smoothing of the dielectric function, but only if the smoothing scheme is properly designed. We develop such a scheme based on a simple criterion taken from perturbation theory and compare it with other published FDTD smoothing methods. In addition to consistently achieving the smallest errors, our scheme is the only one that attains quadratic convergence with resolution for arbitrarily sloped interfaces. Finally, we discuss additional difficulties that arise for sharp dielectric corners.


Applied Physics Letters | 2008

Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector

Lingping Zeng; Peter Bermel; Yasha Yi; Bernard A. Alamariu; K. A. Broderick; Jifeng Liu; Ching-yin Hong; Xiaoman Duan; John D. Joannopoulos; L. C. Kimerling

Herein the authors report the experimental application of a powerful light trapping scheme, the textured photonic crystal (TPC) backside reflector, to thin film Si solar cells. TPC combines a one-dimensional photonic crystal as a distributed Bragg reflector with a diffraction grating. Light absorption is strongly enhanced by high reflectivity and large angle diffraction, as designed with scattering matrix analysis. 5 μm thick monocrystalline thin film Si solar cells integrated with TPC were fabricated through an active layer transfer technique. Measured short circuit current density Jsc was increased by 19%, compared to a theoretical prediction of 28%.


Optics Express | 2010

Design and global optimization of high-efficiency thermophotovoltaic systems

Peter Bermel; Michael Ghebrebrhan; Walker R. Chan; YiXiang Yeng; Mohammad Araghchini; Rafif E. Hamam; Christopher H. Marton; Klavs F. Jensen; Marin Soljacic; John D. Joannopoulos; Steven G. Johnson; Ivan Celanovic

Despite their great promise, small experimental thermophotovoltaic (TPV) systems at 1000 K generally exhibit extremely low power conversion efficiencies (approximately 1%), due to heat losses such as thermal emission of undesirable mid-wavelength infrared radiation. Photonic crystals (PhC) have the potential to strongly suppress such losses. However, PhC-based designs present a set of non-convex optimization problems requiring efficient objective function evaluation and global optimization algorithms. Both are applied to two example systems: improved micro-TPV generators and solar thermal TPV systems. Micro-TPV reactors experience up to a 27-fold increase in their efficiency and power output; solar thermal TPV systems see an even greater 45-fold increase in their efficiency (exceeding the Shockley-Quiesser limit for a single-junction photovoltaic cell).


Proceedings of the National Academy of Sciences of the United States of America | 2012

Enabling high-temperature nanophotonics for energy applications

YiXiang Yeng; Michael Ghebrebrhan; Peter Bermel; Walker R. Chan; John D. Joannopoulos; Marin Soljacic; Ivan Celanovic

The nascent field of high-temperature nanophotonics could potentially enable many important solid-state energy conversion applications, such as thermophotovoltaic energy generation, selective solar absorption, and selective emission of light. However, special challenges arise when trying to design nanophotonic materials with precisely tailored optical properties that can operate at high-temperatures (> 1,100 K). These include proper material selection and purity to prevent melting, evaporation, or chemical reactions; severe minimization of any material interfaces to prevent thermomechanical problems such as delamination; robust performance in the presence of surface diffusion; and long-range geometric precision over large areas with severe minimization of very small feature sizes to maintain structural stability. Here we report an approach for high-temperature nanophotonics that surmounts all of these difficulties. It consists of an analytical and computationally guided design involving high-purity tungsten in a precisely fabricated photonic crystal slab geometry (specifically chosen to eliminate interfaces arising from layer-by-layer fabrication) optimized for high performance and robustness in the presence of roughness, fabrication errors, and surface diffusion. It offers near-ultimate short-wavelength emittance and low, ultra-broadband long-wavelength emittance, along with a sharp cutoff offering 4∶1 emittance contrast over 10% wavelength separation. This is achieved via Q-matching, whereby the absorptive and radiative rates of the photonic crystal’s cavity resonances are matched. Strong angular emission selectivity is also observed, with short-wavelength emission suppressed by 50% at 75° compared to normal incidence. Finally, a precise high-temperature measurement technique is developed to confirm that emission at 1,225 K can be primarily confined to wavelengths shorter than the cutoff wavelength.


Optics Express | 2007

Enhanced nonlinear optics in photonic-crystal microcavities

Jorge Bravo-Abad; Alejandro W. Rodriguez; Peter Bermel; Steven G. Johnson; John D. Joannopoulos; Marin Soljacic

Focus Serial: Frontiers of Nonlinear Optics Nonlinear photonic-crystal microresonators offer unique fundamental ways of enhancing a variety of nonlinear optical processes. This enhancement improves the performance of nonlinear optical devices to such an extent that their corresponding operation powers and switching times are suitable for their implementation in realistic ultrafast integrated optical devices. Here, we review three different nonlinear optical phenomena that can be strongly enhanced in photonic crystal microcavities. First, we discuss a system in which this enhancement has been successfully demonstrated both theoretically and experimentally, namely, a photonic crystal cavity showing optical bistability properties. In this part, we also present the physical basis for this dramatic improvement with respect to the case of traditional nonlinear devices based on nonlinear Fabry-Perot etalons. Secondly, we show how nonlinear photonic crystal cavities can be also used to obtain complete second-harmonic frequency conversion at very low input powers. Finally, we demonstrate that the nonlinear susceptibility of materials can be strongly modified via the so-called Purcell effect, present in the resonant cavities under study.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics

Walker R. Chan; Peter Bermel; Robert C. N. Pilawa-Podgurski; Christopher H. Marton; Klavs F. Jensen; Jay J. Senkevich; John D. Joannopoulos; Marin Soljacic; Ivan Celanovic

The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system design, which we name the microthermophotovoltaic (μTPV) generator. The approach is predicted to be capable of up to 32% efficient heat-to-electricity conversion within a millimeter-scale form factor. Although considerable technological barriers need to be overcome to reach full performance, we have performed a robust experimental demonstration that validates the theoretical framework and the key system components. Even with a much-simplified μTPV system design with theoretical efficiency prediction of 2.7%, we experimentally demonstrate 2.5% efficiency. The μTPV experimental system that was built and tested comprises a silicon propane microcombustor, an integrated high-temperature photonic crystal selective thermal emitter, four 0.55-eV GaInAsSb thermophotovoltaic diodes, and an ultra-high-efficiency maximum power-point tracking power electronics converter. The system was demonstrated to operate up to 800 °C (silicon microcombustor temperature) with an input thermal power of 13.7 W, generating 344 mW of electric power over a 1-cm2 area.


Physical Review Letters | 2011

Frequency-Selective Near-Field Radiative Heat Transfer between Photonic Crystal Slabs: A Computational Approach for Arbitrary Geometries and Materials

Alejandro W. Rodriguez; Ognjen Ilic; Peter Bermel; Ivan Celanovic; John D. Joannopoulos; Marin Soljacic; Steven G. Johnson

We demonstrate the possibility of achieving enhanced frequency-selective near-field radiative heat transfer between patterned (photonic-crystal) slabs at designable frequencies and separations, exploiting a general numerical approach for computing heat transfer in arbitrary geometries and materials based on the finite-difference time-domain method. Our simulations reveal a tradeoff between selectivity and near-field enhancement as the slab-slab separation decreases, with the patterned heat transfer eventually reducing to the unpatterned result multiplied by a fill factor (described by a standard proximity approximation). We also find that heat transfer can be further enhanced at selective frequencies when the slabs are brought into a glide-symmetric configuration, a consequence of the degeneracies associated with the nonsymmorphic symmetry group.


Nanoscale Research Letters | 2011

Tailoring photonic metamaterial resonances for thermal radiation

Peter Bermel; Michael Ghebrebrhan; Michael Robert Harradon; YiXiang Yeng; Ivan Celanovic; John D. Joannopoulos; Marin Soljacic

AbstractSelective solar absorbers generally have limited effectiveness in unconcentrated sunlight, because of reradiation losses over a broad range of wavelengths and angles. However, metamaterials offer the potential to limit radiation exchange to a proscribed range of angles and wavelengths, which has the potential to dramatically boost performance. After globally optimizing one particular class of such designs, we find thermal transfer efficiencies of 78% at temperatures over 1,000°C, with overall system energy conversion efficiencies of 37%, exceeding the Shockley-Quiesser efficiency limit of 31% for photovoltaic conversion under unconcentrated sunlight. This represents a 250% increase in efficiency and 94% decrease in selective emitter area compared to a standard, angular-insensitive selective absorber. PACS: 42.70.Qs; 81.05.Xj; 78.67.Pt; 42.79.Ek


Optics Express | 2011

Design and global optimization of high-efficiency solar thermal systems with tungsten cermets

David A. Chester; Peter Bermel; John D. Joannopoulos; Marin Soljacic; Ivan Celanovic

Solar thermal, thermoelectric, and thermophotovoltaic (TPV) systems have high maximum theoretical efficiencies; experimental systems fall short because of losses by selective solar absorbers and TPV selective emitters. To improve these critical components, we study a class of materials known as cermets. While our approach is completely general, the most promising cermet candidate combines nanoparticles of silica and tungsten. We find that 4-layer silica-tungsten cermet selective solar absorbers can achieve thermal transfer efficiencies of 84.3% at 400 K, and 75.59% at 1000 K, exceeding comparable literature values. Three layer silica-tungsten cermets can also be used as selective emitters for InGaAsSb-based thermophotovoltaic systems, with projected overall system energy conversion efficiencies of 10.66% at 1000 K using realistic design parameters. The marginal benefit of adding more than 4 cermet layers is small (less than 0.26%, relative).

Collaboration


Dive into the Peter Bermel's collaboration.

Top Co-Authors

Avatar

John D. Joannopoulos

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Marin Soljacic

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ivan Celanovic

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven G. Johnson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yasha Yi

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoman Duan

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge