Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter D. Countway is active.

Publication


Featured researches published by Peter D. Countway.


The ISME Journal | 2011

Marine bacterial, archaeal and protistan association networks reveal ecological linkages

Joshua A. Steele; Peter D. Countway; Li Xia; Patrick Vigil; J. Michael Beman; Diane Y. Kim; Cheryl-Emiliane T Chow; Rohan Sachdeva; Adriane C. Jones; Michael S. Schwalbach; Julie M. Rose; Ian Hewson; Anand Patel; Fengzhu Sun; David A. Caron; Jed A. Fuhrman

Microbes have central roles in ocean food webs and global biogeochemical processes, yet specific ecological relationships among these taxa are largely unknown. This is in part due to the dilute, microscopic nature of the planktonic microbial community, which prevents direct observation of their interactions. Here, we use a holistic (that is, microbial system-wide) approach to investigate time-dependent variations among taxa from all three domains of life in a marine microbial community. We investigated the community composition of bacteria, archaea and protists through cultivation-independent methods, along with total bacterial and viral abundance, and physico-chemical observations. Samples and observations were collected monthly over 3 years at a well-described ocean time-series site of southern California. To find associations among these organisms, we calculated time-dependent rank correlations (that is, local similarity correlations) among relative abundances of bacteria, archaea, protists, total abundance of bacteria and viruses and physico-chemical parameters. We used a network generated from these statistical correlations to visualize and identify time-dependent associations among ecologically important taxa, for example, the SAR11 cluster, stramenopiles, alveolates, cyanobacteria and ammonia-oxidizing archaea. Negative correlations, perhaps suggesting competition or predation, were also common. The analysis revealed a progression of microbial communities through time, and also a group of unknown eukaryotes that were highly correlated with dinoflagellates, indicating possible symbioses or parasitism. Possible ‘keystone’ species were evident. The network has statistical features similar to previously described ecological networks, and in network parlance has non-random, small world properties (that is, highly interconnected nodes). This approach provides new insights into the natural history of microbes.


Journal of Eukaryotic Microbiology | 2005

Protistan Diversity Estimates Based on 18S rDNA from Seawater Incubations in the Western North Atlantic1

Peter D. Countway; Rebecca J. Gast; Pratik Savai; David A. Caron

Abstract. Cloning/sequencing and fragment analysis of ribosomal RNA genes (rDNA) are becoming increasingly common methods for the identification of microbial taxa. Sequences of these genes provide many additional taxonomic characters for species that otherwise have few distinctive morphological features, or that require involved microscopy or laboratory culture and testing. These same approaches are now being applied with great success in ecological studies of natural communities of microorganisms. Extensive information on the composition of natural microbial assemblages is being amassed at a rapid pace through genetic analyses of environmental samples and comparison of the resulting genetic information with well‐established (and rapidly growing) public databases. We examined microbial eukaryote diversity in a natural seawater sample from the coastal western North Atlantic Ocean using two molecular biological approaches: the cloning and sequencing of rRNA genes and by fragment analysis of these genes using the terminal restriction fragment length polymorphism (T‐RFLP) method. A simple experiment was carried out to examine changes in the overall eukaryote (largely protistan) diversity and species composition (phylotype diversity) of a natural microbial assemblage when a seawater sample is placed in a container and incubated at ambient light and temperature for 72 h. Containment of the natural seawater sample resulted in relatively minor changes in the overall eukaryote diversity (species richness) obtained by either molecular method at three time points (time‐zero, time‐24 h, time‐72 h). However, substantial changes in the dominance of particular eukaryote phylotypes took place between the three sampling times. Only 18% of the total number of phylotypes observed in the study were observed at all three time points, while 65% (108 of 165) phylotypes were observed only at a single time point (54 unique phylotypes initially, 37 more unique phylotypes at 24 h, and 17 more at 72 h). The results of this study indicate that a high diversity of protistan taxa existed in the original seawater sample at very low abundance, and thus were not observed in the initial characterization of community structure. Containment resulted in significant shifts in the dominance of these taxa, enabling the presence of previously unobserved phylotypes to be documented after 24 or 72 h of incubation.


Applied and Environmental Microbiology | 2009

Defining DNA-Based Operational Taxonomic Units for Microbial-Eukaryote Ecology

David A. Caron; Peter D. Countway; Pratik Savai; Rebecca J. Gast; Astrid Schnetzer; Stefanie Moorthi; Mark R. Dennett; Dawn M. Moran; Adriane C. Jones

ABSTRACT DNA sequence information has increasingly been used in ecological research on microbial eukaryotes. Sequence-based approaches have included studies of the total diversity of selected ecosystems, studies of the autecology of ecologically relevant species, and identification and enumeration of species of interest for human health. It is still uncommon, however, to delineate protistan species based on their genetic signatures. The reluctance to assign species-level designations based on DNA sequences is in part a consequence of the limited amount of sequence information presently available for many free-living microbial eukaryotes and in part a consequence of the problematic nature of and debate surrounding the microbial species concept. Despite the difficulties inherent in assigning species names to DNA sequences, there is a growing need to attach meaning to the burgeoning amount of sequence information entering the literature, and there is a growing desire to apply this information in ecological studies. We describe a computer-based tool that assigns DNA sequences from environmental databases to operational taxonomic units at approximately species-level distinctions. This approach provides a practical method for ecological studies of microbial eukaryotes (primarily protists) by enabling semiautomated analysis of large numbers of samples spanning great taxonomic breadth. Derivation of the algorithm was based on an analysis of complete small-subunit (18S) rRNA gene sequences and partial gene sequences obtained from the GenBank database for morphologically described protistan species. The program was tested using environmental 18S rRNA data sets for two oceanic ecosystems. A total of 388 operational taxonomic units were observed for 2,207 sequences obtained from samples collected in the western North Atlantic and eastern North Pacific oceans.


The ISME Journal | 2009

Protists are microbes too: a perspective.

David A. Caron; Alexandra Z. Worden; Peter D. Countway; Elif Demir; Karla B. Heidelberg

Our understanding of the composition and activities of microbial communities from diverse habitats on our planet has improved enormously during the past decade, spurred on largely by advances in molecular biology. Much of this research has focused on the bacteria, and to a lesser extent on the archaea and viruses, because of the relative ease with which these assemblages can be analyzed and studied genetically. In contrast, single-celled, eukaryotic microbes (the protists) have received much less attention, to the point where one might question if they have somehow been demoted from the position of environmentally important taxa. In this paper, we draw attention to this situation and explore several possible (some admittedly lighthearted) explanations for why these remarkable and diverse microbes have remained largely overlooked in the present ‘era of the microbe’.


Applied and Environmental Microbiology | 2006

Abundance and Distribution of Ostreococcus sp. in the San Pedro Channel, California, as Revealed by Quantitative PCR

Peter D. Countway; David A. Caron

ABSTRACT Ostreococcus is a genus of widely distributed marine phytoplankton which are picoplanktonic in size (<2 μm) and capable of rapid growth. Although Ostreococcus has been detected around the world, little quantitative information exists on its contribution to planktonic communities. We designed and implemented a genus-specific TaqMan-based quantitative PCR (qPCR) assay to investigate the dynamics and ecology of Ostreococcus at the USC Microbial Observatory (eastern North Pacific). Samples were collected from 5 m and the deep chlorophyll maximum (DCM) between September 2000 and August 2002. Ostreococcus abundance at 5 m was generally <5.0 × 103 cells ml−1, with a maximum of 8.2 × 104 cells ml−1. Ostreococcus abundance was typically higher at the DCM, with a maximum of 3.2 × 105 cells ml−1. The vertical distribution of Ostreococcus was examined in March 2005 and compared to the distribution of phototrophic picoeukaryotes (PPE) measured by flow cytometry. The largest contribution to PPE abundance by Ostreococcus was ∼70% and occurred at 30 m, near the DCM. Despite its relatively low abundance, the depth-integrated standing stock of Ostreococcus in March 2005 was ∼30 mg C m−2. Our work provides a new technique for quantifying the abundance of Ostreococcus and demonstrates the seasonal dynamics of this genus and its contribution to picoeukaryote biomass at our coastal sampling station.


Journal of Eukaryotic Microbiology | 2004

The Growing Contributions of Molecular Biology and Immunology to Protistan Ecology: Molecular Signatures as Ecological Tools1

David A. Caron; Peter D. Countway; Mark V. Brown

Abstract Modern genetic and immunological techniques have become important tools for assessing protistan species diversity for both the identification and quantification of specific taxa in natural microbial communities. Although these methods are still gaining use among ecologists, the new approaches have already had a significant impact on our understanding of protistan diversity and biogeography. For example, genetic studies of environmental samples have uncovered many protistan phylotypes that do not match the DNA sequences of any cultured organisms, and whose morphological identities are unknown at the present time. Additionally, rapid and sensitive methods for detecting and enumerating taxa of special importance (e.g. bloom-forming algae, parasitic protists) have enabled much more detailed distributional and experimental studies than have been possible using traditional methods. Nevertheless, while the application of molecular approaches has advanced some aspects of aquatic protistan ecology, significant issues still thwart the widespread adoption of these approaches. These issues include the highly technical nature of some of the molecular methods, the reconciliation of morphology-based and sequence-based species identifications, and the species concept itself.


Applied and Environmental Microbiology | 2014

Investigating Microbial Eukaryotic Diversity from a Global Census: Insights from a Comparison of Pyrotag and Full-Length Sequences of 18S rRNA Genes

Alle A. Y. Lie; Zhenfeng Liu; Sarah K. Hu; Adriane C. Jones; Diane Y. Kim; Peter D. Countway; Linda A. Amaral-Zettler; S. Craig Cary; Evelyn B. Sherr; Barry F. Sherr; Rebecca J. Gast; David A. Caron

ABSTRACT Next-generation DNA sequencing (NGS) approaches are rapidly surpassing Sanger sequencing for characterizing the diversity of natural microbial communities. Despite this rapid transition, few comparisons exist between Sanger sequences and the generally much shorter reads of NGS. Operational taxonomic units (OTUs) derived from full-length (Sanger sequencing) and pyrotag (454 sequencing of the V9 hypervariable region) sequences of 18S rRNA genes from 10 global samples were analyzed in order to compare the resulting protistan community structures and species richness. Pyrotag OTUs called at 98% sequence similarity yielded numbers of OTUs that were similar overall to those for full-length sequences when the latter were called at 97% similarity. Singleton OTUs strongly influenced estimates of species richness but not the higher-level taxonomic composition of the community. The pyrotag and full-length sequence data sets had slightly different taxonomic compositions of rhizarians, stramenopiles, cryptophytes, and haptophytes, but the two data sets had similarly high compositions of alveolates. Pyrotag-based OTUs were often derived from sequences that mapped to multiple full-length OTUs at 100% similarity. Thus, pyrotags sequenced from a single hypervariable region might not be appropriate for establishing protistan species-level OTUs. However, nonmetric multidimensional scaling plots constructed with the two data sets yielded similar clusters, indicating that beta diversity analysis results were similar for the Sanger and NGS sequences. Short pyrotag sequences can provide holistic assessments of protistan communities, although care must be taken in interpreting the results. The longer reads (>500 bp) that are now becoming available through NGS should provide powerful tools for assessing the diversity of microbial eukaryotic assemblages.


Applied and Environmental Microbiology | 2011

Examination of the Seasonal Dynamics of the Toxic Dinoflagellate Alexandrium catenella at Redondo Beach, California, by Quantitative PCR

Marie-Ève Garneau; Astrid Schnetzer; Peter D. Countway; Adriane C. Jones; Erica Seubert; David A. Caron

ABSTRACT The presence of neurotoxic species within the genus Alexandrium along the U.S. coastline has raised concern of potential poisoning through the consumption of contaminated seafood. Paralytic shellfish toxins (PSTs) detected in shellfish provide evidence that these harmful events have increased in frequency and severity along the California coast during the past 25 years, but the timing and location of these occurrences have been highly variable. We conducted a 4-year survey in King Harbor, CA, to investigate the seasonal dynamics of Alexandrium catenella and the presence of a particulate saxitoxin (STX), the parent compound of the PSTs. A quantitative PCR (qPCR) assay was developed for quantifying A. catenella in environmental microbial assemblages. This approach allowed for the detection of abundances as low as 12 cells liter−1, 2 orders of magnitude below threshold abundances that can impact food webs. A. catenella was found repeatedly during the study, particularly in spring, when cells were detected in 38% of the samples (27 to 5,680 cells liter−1). This peak in cell abundances was observed in 2006 and corresponded to a particulate STX concentration of 12 ng liter−1, whereas the maximum STX concentration of 26 ng liter−1 occurred in April 2008. Total cell abundances and toxin levels varied strongly throughout each year, but A. catenella was less abundant during summer, fall, and winter, when only 2 to 11% of the samples yielded positive qPCR results. The qPCR method developed here provides a useful tool for investigating the ecology of A. catenella at subbloom and bloom abundances.


The ISME Journal | 2014

Monthly to interannual variability of microbial eukaryote assemblages at four depths in the eastern North Pacific

Diane Y. Kim; Peter D. Countway; Adriane C. Jones; Astrid Schnetzer; Warren Yamashita; Christine Kit-Ching Tung; David A. Caron

The monthly, seasonal and interannual variability of microbial eukaryote assemblages were examined at 5 m, the deep chlorophyll maximum, 150 m and 500 m at the San Pedro Ocean Time-series station (eastern North Pacific). The depths spanned transitions in temperature, light, nutrients and oxygen, and included a persistently hypoxic environment at 500 m. Terminal restriction fragment length polymorphism was used for the analysis of 237 samples that were collected between September 2000 and December 2010. Spatiotemporal variability patterns of microeukaryote assemblages indicated the presence of distinct shallow and deep communities at the SPOT station, presumably reflecting taxa that were specifically adapted for the conditions in those environments. Community similarity values between assemblages collected 1 month apart at each depth ranged between ∼20% and ∼84% (averages were ∼50–59%). The assemblage at 5 m was temporally more dynamic than deeper assemblages and also displayed substantial interannual variability during the first ∼3 years of the study. Evidence of seasonality was detected for the microbial eukaryote assemblage at 5 m between January 2008 and December 2010 and at 150 m between September 2000 and December 2003. Seasonality was not detected for assemblages at the deep chlorophyll a maximum, which varied in depth seasonally, or at 500 m. Microbial eukaryote assemblages exhibited cyclical patterns in at least 1 year at each depth, implying an annual resetting of communities. Substantial interannual variability was detected for assemblages at all depths and represented the largest source of temporal variability in this temperate coastal ecosystem.


Protist | 2010

Phylogenetic affiliations of mesopelagic acantharia and acantharian-like environmental 18S rRNA genes off the southern California coast.

Ilana C. Gilg; Linda A. Amaral-Zettler; Peter D. Countway; Stefanie Moorthi; Astrid Schnetzer; David A. Caron

Incomplete knowledge of acantharian life cycles has hampered their study and limited our understanding of their role in the vertical flux of carbon and strontium. Molecular tools can help identify enigmatic life stages and offer insights into aspects of acantharian biology and evolution. We inferred the phylogenetic position of acantharian sequences from shallow water, as well as acantharian-like clone sequences from 500 and 880 m in the San Pedro Channel, California. The analyses included validated acantharian and polycystine sequences from public databases with environmental clone sequences related to acantharia and used Bayesian inference methods. Our analysis demonstrated strong support for two branches of unidentified organisms that are closely related to, but possibly distinct from the Acantharea. We also found evidence of acantharian sequences from mesopelagic environments branching within the chaunacanthid clade, although the morphology of these organisms is presently unknown. HRP-conjugated probes were developed to target Acantharea and phylotypes from Unidentified Clade 1 using Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) on samples collected at 500 m. Our CARD-FISH experiments targeting phylotypes from an unidentified clade offer preliminary glimpses into the morphology of these protists, while a morphology for the aphotic acantharian lineages remains unknown at this time.

Collaboration


Dive into the Peter D. Countway's collaboration.

Top Co-Authors

Avatar

David A. Caron

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Astrid Schnetzer

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Adriane C. Jones

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Rebecca J. Gast

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Diane Y. Kim

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Stefanie Moorthi

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Julie M. Rose

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Pratik Savai

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge