Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Gehrig is active.

Publication


Featured researches published by Peter Gehrig.


Molecular & Cellular Proteomics | 2007

Qualitative and Quantitative Analyses of Protein Phosphorylation in Naive and Stimulated Mouse Synaptosomal Preparations

Richard P. Munton; Ry Y. Tweedie-Cullen; Magdalena Livingstone-Zatchej; Franziska Weinandy; Marc Waidelich; Davide Longo; Peter Gehrig; Frank Potthast; Dorothea Rutishauser; Bertran Gerrits; Christian Panse; Ralph Schlapbach; Isabelle M. Mansuy

Activity-dependent protein phosphorylation is a highly dynamic yet tightly regulated process essential for cellular signaling. Although recognized as critical for neuronal functions, the extent and stoichiometry of phosphorylation in brain cells remain undetermined. In this study, we resolved activity-dependent changes in phosphorylation stoichiometry at specific sites in distinct subcellular compartments of brain cells. Following highly sensitive phosphopeptide enrichment using immobilized metal affinity chromatography and mass spectrometry, we isolated and identified 974 unique phosphorylation sites on 499 proteins, many of which are novel. To further explore the significance of specific phosphorylation sites, we used isobaric peptide labels and determined the absolute quantity of both phosphorylated and non-phosphorylated peptides of candidate phosphoproteins and estimated phosphorylation stoichiometry. The analyses of phosphorylation dynamics using differentially stimulated synaptic terminal preparations revealed activity-dependent changes in phosphorylation stoichiometry of target proteins. Using this method, we were able to differentiate between distinct isoforms of Ca2+/calmodulin-dependent protein kinase (CaMKII) and identify a novel activity-regulated phosphorylation site on the glutamate receptor subunit GluR1. Together these data illustrate that mass spectrometry-based methods can be used to determine activity-dependent changes in phosphorylation stoichiometry on candidate phosphopeptides following large scale phosphoproteome analysis of brain tissue.


Molecular Cell | 2003

Methylation of SPT5 Regulates Its Interaction with RNA Polymerase II and Transcriptional Elongation Properties

Youn Tae Kwak; Jun Guo; Shashi Prajapati; Kyu-Jin Park; Rama M. Surabhi; Brady Miller; Peter Gehrig; Richard B. Gaynor

SPT5 and its binding partner SPT4 function in both positively and negatively regulating transcriptional elongation. The demonstration that SPT5 and RNA polymerase II are targets for phosphorylation by CDK9/cyclin T1 indicates that posttranslational modifications of these factors are important in regulating the elongation process. In this study, we utilized a biochemical approach to demonstrate that SPT5 was specifically associated with the protein arginine methyltransferases PRMT1 and PRMT5 and that SPT5 methylation regulated its interaction with RNA polymerase II. Specific arginine residues in SPT5 that are methylated by these enzymes were identified and demonstrated to be important in regulating its promoter association and subsequent effects on transcriptional elongation. These results suggest that methylation of SPT5 is an important posttranslational modification that is involved in regulating its transcriptional elongation properties in response to viral and cellular factors.


Nucleic Acids Research | 2010

PARP1 ADP-ribosylates lysine residues of the core histone tails

Simon Messner; Matthias Altmeyer; Hongtao Zhao; Andrea Pozivil; Bernd Roschitzki; Peter Gehrig; Dorothea Rutishauser; Danzhi Huang; Amedeo Caflisch; Michael O. Hottiger

The chromatin-associated enzyme PARP1 has previously been suggested to ADP-ribosylate histones, but the specific ADP-ribose acceptor sites have remained enigmatic. Here, we show that PARP1 covalently ADP-ribosylates the amino-terminal histone tails of all core histones. Using biochemical tools and novel electron transfer dissociation mass spectrometric protocols, we identify for the first time K13 of H2A, K30 of H2B, K27 and K37 of H3, as well as K16 of H4 as ADP-ribose acceptor sites. Multiple explicit water molecular dynamics simulations of the H4 tail peptide into the catalytic cleft of PARP1 indicate that two stable intermolecular salt bridges hold the peptide in an orientation that allows K16 ADP-ribosylation. Consistent with a functional cross-talk between ADP-ribosylation and other histone tail modifications, acetylation of H4K16 inhibits ADP-ribosylation by PARP1. Taken together, our computational and experimental results provide strong evidence that PARP1 modifies important regulatory lysines of the core histone tails.


Molecular Cell | 2001

Regulation of Human Flap Endonuclease-1 Activity by Acetylation through the Transcriptional Coactivator p300

Sameez Hasan; Manuel Stucki; Paul O. Hassa; Ralph Imhof; Peter Gehrig; Peter Hunziker; Ulrich Hübscher; Michael O. Hottiger

We describe a role for the transcriptional coactivator p300 in DNA metabolism. p300 formed a complex with flap endonuclease-1 (Fen1) and acetylated Fen1 in vitro. Furthermore, Fen1 acetylation was observed in vivo and was enhanced upon UV treatment of human cells. Remarkably, acetylation of the Fen1 C terminus by p300 significantly reduced Fen1s DNA binding and nuclease activity. Proliferating cell nuclear antigen (PCNA) was able to stimulate both acetylated and unacetylated Fen1 activity to the same extent. Our results identify acetylation as a novel regulatory modification of Fen1 and implicate that p300 is not only a component of the chromatin remodeling machinery but might also play a critical role in regulating DNA metabolic events.


Molecular & Cellular Proteomics | 2008

Quantitative Proteomic Analysis of Protein Complexes Concurrent Identification of Interactors and Their State of Phosphorylation

Delphine Pflieger; Martin A. Jünger; Markus Müller; Oliver Rinner; Hookeun Lee; Peter Gehrig; Matthias Gstaiger; Ruedi Aebersold

Protein complexes have largely been studied by immunoaffinity purification and (mass spectrometric) analysis. Although this approach has been widely and successfully used it is limited because it has difficulties reliably discriminating true from false protein complex components, identifying post-translational modifications, and detecting quantitative changes in complex composition or state of modification of complex components. We have developed a protocol that enables us to determine, in a single LC-MALDI-TOF/TOF analysis, the true protein constituents of a complex, to detect changes in the complex composition, and to localize phosphorylation sites and estimate their respective stoichiometry. The method is based on the combination of fourplex iTRAQ (isobaric tags for relative and absolute quantification) isobaric labeling and protein phosphatase treatment of substrates. It was evaluated on model peptides and proteins and on the complex Ccl1-Kin28-Tfb3 isolated by tandem affinity purification from yeast cells. The two known phosphosites in Kin28 and Tfb3 could be reproducibly shown to be fully modified. The protocol was then applied to the analysis of samples immunopurified from Drosophila melanogaster cells expressing an epitope-tagged form of the insulin receptor substrate homologue Chico. These experiments allowed us to identify 14-3-3ε, 14-3-3ζ, and the insulin receptor as specific Chico interactors. In a further experiment, we compared the immunopurified materials obtained from tagged Chico-expressing cells that were either treated with insulin or left unstimulated. This analysis showed that hormone stimulation increases the association of 14-3-3 proteins with Chico and modulates several phosphorylation sites of the bait, some of which are located within predicted recognition motives of 14-3-3 proteins.


Journal of Biological Chemistry | 2009

Neuronal Nogo-A Modulates Growth Cone Motility via Rho-GTP/LIMK1/Cofilin in the Unlesioned Adult Nervous System

Laura Montani; Bertran Gerrits; Peter Gehrig; Anissa Kempf; Leda Dimou; Bernd Wollscheid; Martin E. Schwab

Nogo-A has been extensively studied as a myelin-associated neurite outgrowth inhibitor in the lesioned adult central nervous system. However, its role in the intact central nervous system has not yet been clarified. Analysis of the intact adult nervous system of C57BL/6 Nogo-A knock-out (KO) versus wild-type (WT) mice by a combined two-dimensional gel electrophoresis and isotope-coded affinity tagging approach revealed regulation of cytoskeleton-, transport-, and signaling growth-related proteins, pointing to regulation of the actin cytoskeleton, the neuronal growth machinery, and in particular the Rho-GTPase/LIMK1/cofilin pathway. Nogo-A KO adult neurons showed enlarged, more motile growth cones compared with WT neurons. The phenotype was reproduced by acute in vitro neutralization of neuronal Nogo-A. LIMK1 phosphorylation was increased in Nogo-A KO growth cones, and its reduction caused the decrease of KO growth cone motility to WT levels. Our study suggests that in the unlesioned adult nervous system, neuronal Nogo-A can restrict neuronal growth through negative modulation of growth cone motility.


Plant Journal | 2011

iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration.

Judith Owiti; Jonas Grossmann; Peter Gehrig; Christophe Dessimoz; Christophe Laloi; Maria Benn Hansen; Wilhelm Gruissem; Hervé Vanderschuren

The short storage life of harvested cassava roots is an important constraint that limits the full potential of cassava as a commercial food crop in developing countries. We investigated the molecular changes during physiological deterioration of cassava root after harvesting using isobaric tags for relative and absolute quantification (iTRAQ) of proteins in soluble and non-soluble fractions prepared during a 96 h post-harvest time course. Combining bioinformatic approaches to reduce information redundancy for unsequenced or partially sequenced plant species, we established a comprehensive proteome map of the cassava root and identified quantitatively regulated proteins. Up-regulation of several key proteins confirmed that physiological deterioration of cassava root after harvesting is an active process, with 67 and 170 proteins, respectively, being up-regulated early and later after harvesting. This included regulated proteins that had not previously been associated with physiological deterioration after harvesting, such as linamarase, glutamic acid-rich protein, hydroxycinnamoyl transferase, glycine-rich RNA binding protein, β-1,3-glucanase, pectin methylesterase, maturase K, dehydroascorbate reductase, allene oxide cyclase, and proteins involved in signal pathways. To confirm the regulation of these proteins, activity assays were performed for selected enzymes. Together, our results show that physiological deterioration after harvesting is a highly regulated complex process involving proteins that are potential candidates for biotechnology approaches to reduce such deterioration.


Cardiovascular Research | 2008

Phosphoproteome analysis of isoflurane-protected heart mitochondria: phosphorylation of adenine nucleotide translocator-1 on Tyr194 regulates mitochondrial function

Jianhua Feng; Min Zhu; Marcus C. Schaub; Peter Gehrig; Bernd Roschitzki; Eliana Lucchinetti; Michael Zaugg

AIMS Reversible phosphorylation of mitochondrial proteins is essential in the regulation of respiratory function, energy metabolism, and mitochondrion-mediated cell death. We hypothesized that mitochondrial protein phosphorylation plays a critical role in cardioprotection during pre and postconditioning, two of the most efficient anti-ischaemic therapies. METHODS AND RESULTS Using phosphoproteomic approaches, we investigated the profiles of phosphorylated proteins in Wistar rat heart mitochondria protected by pharmacological pre and postconditioning elicited by isoflurane. Sixty-one spots were detected by two-dimensional blue-native gel electrophoresis-coupled Western blotting using a phospho-Ser/Thr/Tyr-specific antibody, and 45 of these spots were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Eleven protein spots related to oxidative phosphorylation, energy metabolism, chaperone, and carrier functions exhibited significant changes in their phosphorylation state when protected mitochondria were compared with unprotected. Using a phosphopeptide enrichment protocol followed by liquid chromatography-MS/MS, 26 potential phosphorylation sites were identified in 19 proteins. Among these, a novel phosphorylation site was detected in adenine nucleotide translocator-1 (ANT1) at residue Tyr(194). Changes in ANT phosphorylation between protected and unprotected mitochondria were confirmed by immunoprecipitation. The biological significance of ANT phosphorylation at Tyr(194) was further tested with site-directed mutagenesis in yeast. Substitution of Tyr(194) with Phe, mimicking the non-phosphorylated state, resulted in the inhibition of yeast growth on non-fermentable carbon sources, implying a critical role of phosphorylation at this residue in regulating ANT function and cellular respiration. CONCLUSIONS Our analysis emphasizes the regulatory functions of the phosphoproteome in heart mitochondria and reveals a novel, potential link between bioenergetics and cardioprotection.


Journal of Biological Chemistry | 2009

Identification of apolipoprotein n-acyltransferase (LNT) in mycobacteria

Andreas Tschumi; Corrado Nai; Yolanda Auchli; Peter Hunziker; Peter Gehrig; Peter M. Keller; Thomas Grau; Peter Sander

Lipoproteins of Gram-negative and Gram-positive bacteria carry a thioether-bound diacylglycerol but differ by a fatty acid amide bound to the α-amino group of the universally conserved cysteine. In Escherichia coli the N-terminal acylation is catalyzed by the N-acyltransferase Lnt. Using E. coli Lnt as a query in a BLASTp search, we identified putative lnt genes also in Gram-positive mycobacteria. The Mycobacterium tuberculosis lipoprotein LppX, heterologously expressed in Mycobacterium smegmatis, was N-acylated at the N-terminal cysteine, whereas LppX expressed in a M. smegmatis lnt::aph knock-out mutant was accessible for N-terminal sequencing. Western blot analyses of a truncated and tagged form of LppX indicated a smaller size of about 0.3 kDa in the lnt::aph mutant compared with the parental strain. Matrix-assisted laser desorption ionization time-of-flight/time-of-flight analyses of a trypsin digest of LppX proved the presence of the diacylglycerol modification in both strains, the parental strain and lnt::aph mutant. N-Acylation was found exclusively in the M. smegmatis parental strain. Complementation of the lnt::aph mutant with M. tuberculosis ppm1 restored N-acylation. The substrate for N-acylation is a C16 fatty acid, whereas the two fatty acids of the diacylglycerol residue were identified as C16 and C19:0 fatty acid, the latter most likely tuberculostearic acid. We demonstrate that mycobacterial lipoproteins are triacylated. For the first time to our knowledge, we identify Lnt activity in Gram-positive bacteria and assigned the responsible genes. In M. smegmatis and M. tuberculosis the open reading frames are annotated as MSMEG_3860 and M. tuberculosis ppm1, respectively.


The FASEB Journal | 2007

Methylation of DNA polymerase β by protein arginine methyltransferase 1 regulates its binding to proliferating cell nuclear antigen

Nazim El-Andaloussi; Taras Valovka; Magali Toueille; Paul O. Hassa; Peter Gehrig; Marcela Covic; Ulrich Hübscher; Michael O. Hottiger

DNA polymerase β (pol β) is a key player in DNA base excision repair (BER). Here, we describe the complex formation of pol β with the protein arginine methyltransferase 1 (PRMT1). PRMT1 specifically methylated pol β in vitro and in vivo. Arginine 137 was identified in pol β as an important target for methylation by PRMT1. Neither the polymerase nor the dRP‐lyase activities of pol β were affected by PRMT1 methylation. However, this modification abolished the interaction of pol β with proliferating cell nuclear antigen (PCNA). Together, our results provide evidence that PRMT1 methylation of pol β might play a regulatory role in BER by preventing the involvement of pol β in PCNA‐dependent DNA metabolic events. El‐Andaloussi, N., Valovka, T., Toueille, M., Hassa, P. O., Gehrig, P., Covic, M., Hübscher, U., Hottiger, M. O. Methylation of DNA polymerase f by protein arginine methyltransferase 1 regulates its binding to proliferating cell nuclear antigen. FASEB J. 21, 26–34 (2007)

Collaboration


Dive into the Peter Gehrig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge