Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter H. Lauritzen is active.

Publication


Featured researches published by Peter H. Lauritzen.


Journal of Climate | 2013

The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments

Richard Neale; Jadwiga H. Richter; Sungsu Park; Peter H. Lauritzen; Stephen J. Vavrus; Philip J. Rasch; Minghua Zhang

AbstractThe Community Atmosphere Model, version 4 (CAM4), was released as part of the Community Climate System Model, version 4 (CCSM4). The finite volume (FV) dynamical core is now the default because of its superior transport and conservation properties. Deep convection parameterization changes include a dilute plume calculation of convective available potential energy (CAPE) and the introduction of convective momentum transport (CMT). An additional cloud fraction calculation is now performed following macrophysical state updates to provide improved thermodynamic consistency. A freeze-drying modification is further made to the cloud fraction calculation in very dry environments (e.g., the Arctic), where cloud fraction and cloud water values were often inconsistent in CAM3. In CAM4 the FV dynamical core further degrades the excessive trade-wind simulation, but reduces zonal stress errors at higher latitudes. Plume dilution alleviates much of the midtropospheric tropical dry biases and reduces the persist...


ieee international conference on high performance computing data and analytics | 2012

CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model

John M. Dennis; Jim Edwards; Katherine J. Evans; Oksana Guba; Peter H. Lauritzen; Arthur A. Mirin; Amik St-Cyr; Mark A. Taylor; Patrick H. Worley

The Community Atmosphere Model (CAM) version 5 includes a spectral element dynamical core option from NCAR’s High-Order Method Modeling Environment. It is a continuous Galerkin spectral finite-element method designed for fully unstructured quadrilateral meshes. The current configurations in CAM are based on the cubed-sphere grid. The main motivation for including a spectral element dynamical core is to improve the scalability of CAM by allowing quasi-uniform grids for the sphere that do not require polar filters. In addition, the approach provides other state-of-the-art capabilities such as improved conservation properties. Spectral elements are used for the horizontal discretization, while most other aspects of the dynamical core are a hybrid of well-tested techniques from CAM’s finite volume and global spectral dynamical core options. Here we first give an overview of the spectral element dynamical core as used in CAM. We then give scalability and performance results from CAM running with three different dynamical core options within the Community Earth System Model, using a pre-industrial time-slice configuration. We focus on high-resolution simulations, using 1/4 degree, 1/8 degree, and T341 spectral truncation horizontal grids.


Journal of Climate | 2014

Exploratory High-Resolution Climate Simulations using the Community Atmosphere Model (CAM)

Julio T. Bacmeister; Michael F. Wehner; Richard Neale; Andrew Gettelman; Cecile Hannay; Peter H. Lauritzen; Julie M. Caron; John E. Truesdale

AbstractExtended, high-resolution (0.23° latitude × 0.31° longitude) simulations with Community Atmosphere Model versions 4 and 5 (CAM4 and CAM5) are examined and compared with results from climate simulations conducted at a more typical resolution of 0.9° latitude × 1.25° longitude. Overall, the simulated climate of the high-resolution experiments is not dramatically better than that of their low-resolution counterparts. Improvements appear primarily where topographic effects may be playing a role, including a substantially improved summertime Indian monsoon simulation in CAM4 at high resolution. Significant sensitivity to resolution is found in simulated precipitation over the southeast United States during winter. Some aspects of the simulated seasonal mean precipitation deteriorate notably at high resolution. Prominent among these is an exacerbated Pacific “double ITCZ” bias in both models. Nevertheless, while large-scale seasonal means are not dramatically better at high resolution, realistic tropica...


Journal of Computational Physics | 2010

A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid

Peter H. Lauritzen; Paul A. Ullrich

A conservative multi-tracer transport algorithm on the cubed-sphere based on the semi-Lagrangian approach (CSLAM) has been developed. The scheme relies on backward trajectories and the resulting upstream cells (polygons) are approximated with great-circle arcs. Biquadratic polynomial functions are used for approximating the density distribution in the cubed-sphere grid cells. The upstream surface integrals associated with the conservative semi-Lagrangian scheme are computed as line-integrals by employing the Gauss-Green theorem. The line-integrals are evaluated using a combination of exact integrals and high-order Gaussian quadrature. The upstream cell (trajectories) information and computation of weights of integrals can be reused for each additional tracer. The CSLAM scheme is extensively tested with various standard benchmark test cases of solid-body rotation and deformational flow in both Cartesian and spherical geometry, and the results are compared with those of other published schemes. The CSLAM scheme is accurate, robust, and moreover, the edges and vertices of the cubed-sphere (discontinuities) do not affect the overall accuracy of the scheme. The CSLAM scheme exhibits excellent convergence properties and has an option for enforcing monotonicity. The advantages of introducing cross-terms in the fully two-dimensional biquadratic density distribution functions are also examined in the context of Cartesian as well as the cubed-sphere grid which has six local sub-domains with discontinuous edges and corners.


Journal of Computational Physics | 2010

A class of deformational flow test cases for linear transport problems on the sphere

Peter H. Lauritzen

A class of new benchmark deformational flow test cases for the two-dimensional horizontal linear transport problems on the sphere is proposed. The scalar field follows complex trajectories and undergoes severe deformation during the simulation; however, the flow reverses its course at half-time and the scalar field returns to its initial position and shape. This process makes the exact solution available at the end of the simulation, and facilitates assessment of the accuracy of the underlying transport scheme. A procedure to eliminate possible cancellations of errors when the flow reverses is proposed. The test suite consists of four cases. Three are based on non-divergent flow fields and one on a divergent flow. The initial conditions are prescribed in terms of regular latitude-longitude spherical coordinates and are easy to implement. The divergent flow is specifically aimed for conservative global transport schemes to test for conservation, consistency and monotonicity (or positivity) of limiters/filters in a challenging flow environment. In the context of semi-Lagrangian schemes, the time-varying flow fields can be used to test trajectory algorithms where the exact trajectories do not follow great-circle arcs. The characteristics of the test cases are demonstrated with two different transport schemes.


Geophysical Research Letters | 2014

Gravity waves simulated by high‐resolution Whole Atmosphere Community Climate Model

Han-Li Liu; J. M. McInerney; S. Santos; Peter H. Lauritzen; Mark A. Taylor; N. M. Pedatella

For the first time a mesoscale-resolving whole atmosphere general circulation model has been developed, using the National Center for Atmospheric Research Whole Atmosphere Community Climate Model with ∼0.25° horizontal resolution and 0.1 scale height vertical resolution above the middle stratosphere (higher resolution below). This is made possible by the high accuracy and high scalability of the spectral element dynamical core from the High-Order Method Modeling Environment. For the simulated January–February period, the latitude-height structure and the magnitudes of the temperature variance compare well with those deduced from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) observations. The simulation reveals the increasing dominance of gravity waves (GWs) at higher altitudes through both the height dependence of the kinetic energy spectra, which display a steeper slope (∼−3) in the stratosphere and an increasingly shallower slope above, and the increasing spatial extent of GWs (including a planetary-scale extent of a concentric GW excited by a tropical cyclone) at higher altitudes. GW impacts on the large-scale flow are evaluated in terms of zonal mean zonal wind and tides: with no GW drag parameterized in the simulations, forcing by resolved GWs does reverse the summer mesospheric wind, albeit at an altitude higher than climatology, and only slows down the winter mesospheric wind without closing it. The hemispheric structures and magnitudes of diurnal and semidiurnal migrating tides compare favorably with observations.


Journal of the Atmospheric Sciences | 2015

Global Radiative–Convective Equilibrium in the Community Atmosphere Model, Version 5

Kevin A. Reed; Brian Medeiros; Julio T. Bacmeister; Peter H. Lauritzen

AbstractIn the continued effort to understand the climate system and improve its representation in atmospheric general circulation models (AGCMs), it is crucial to develop reduced-complexity frameworks to evaluate these models. This is especially true as the AGCM community advances toward high horizontal resolutions (i.e., grid spacing less than 50 km), which will require interpreting and improving the performance of many model components. A simplified global radiative–convective equilibrium (RCE) configuration is proposed to explore the implication of horizontal resolution on equilibrium climate. RCE is the statistical equilibrium in which the radiative cooling of the atmosphere is balanced by heating due to convection.In this work, the Community Atmosphere Model, version 5 (CAM5), is configured in RCE to better understand tropical climate and extremes. The RCE setup consists of an ocean-covered Earth with diurnally varying, spatially uniform insolation and no rotation effects. CAM5 is run at two horizon...


Journal of Climate | 2013

AMIP Simulation with the CAM4 Spectral Element Dynamical Core

Katherine J. Evans; Peter H. Lauritzen; Saroj Mishra; Rich Neale; Mark A. Taylor; Joseph Tribbia

AbstractThe authors evaluate the climate produced by the Community Climate System Model, version 4, running with the new spectral element atmospheric dynamical core option. The spectral element method is configured to use a cubed-sphere grid, providing quasi-uniform resolution over the sphere and increased parallel scalability and removing the need for polar filters. It uses a fourth-order accurate spatial discretization that locally conserves mass and total energy. Using the Atmosphere Model Intercomparison Project protocol, the results from the spectral element dynamical core are compared with those produced by the default finite-volume dynamical core and with observations. Even though the two dynamical cores are quite different, their simulated climates are remarkably similar. When compared with observations, both models have strengths and weaknesses but have nearly identical root-mean-square errors and the largest biases show little sensitivity to the dynamical core. The spectral element core does an ...


Journal of Climate | 2012

DART/CAM: An Ensemble Data Assimilation System for CESM Atmospheric Models

Kevin Raeder; Jeffrey L. Anderson; Nancy Collins; Timothy J. Hoar; Jennifer E. Kay; Peter H. Lauritzen; Robert Pincus

AbstractThe Community Atmosphere Model (CAM) has been interfaced to the Data Assimilation Research Testbed (DART), a community facility for ensemble data assimilation. This provides a large set of data assimilation tools for climate model research and development. Aspects of the interface to the Community Earth System Model (CESM) software are discussed and a variety of applications are illustrated, ranging from model development to the production of long series of analyses. CAM output is compared directly to real observations from platforms ranging from radiosondes to global positioning system satellites. Such comparisons use the temporally and spatially heterogeneous analysis error estimates available from the ensemble to provide very specific forecast quality evaluations. The ability to start forecasts from analyses, which were generated by CAM on its native grid and have no foreign model bias, contributed to the detection of a code error involving Arctic sea ice and cloud cover. The potential of param...


Archive | 2011

Numerical techniques for global atmospheric models

Peter H. Lauritzen

Part I: Equations of motion and some basic ideas on discretizations.- Pat II. Conservation laws, finite-volume methods, remapping techniques and spherical grids.- Part III. Some aspects of atmospheric dynamical cores

Collaboration


Dive into the Peter H. Lauritzen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Taylor

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Julio T. Bacmeister

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin M. Zarzycki

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John E. Truesdale

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Richard Neale

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

William C. Skamarock

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Andrew Gettelman

National Center for Atmospheric Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge