Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Hegemann is active.

Publication


Featured researches published by Peter Hegemann.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Channelrhodopsin-2, a directly light-gated cation-selective membrane channel

Georg Nagel; Tanjef Szellas; Wolfram Huhn; Suneel Kateriya; Nona Adeishvili; Peter Berthold; Doris Ollig; Peter Hegemann; Ernst Bamberg

Microbial-type rhodopsins are found in archaea, prokaryotes, and eukaryotes. Some of them represent membrane ion transport proteins such as bacteriorhodopsin, a light-driven proton pump, or channelrhodopsin-1 (ChR1), a recently identified light-gated proton channel from the green alga Chlamydomonas reinhardtii. ChR1 and ChR2, a related microbial-type rhodopsin from C. reinhardtii, were shown to be involved in generation of photocurrents of this green alga. We demonstrate by functional expression, both in oocytes of Xenopus laevis and mammalian cells, that ChR2 is a directly light-switched cation-selective ion channel. This channel opens rapidly after absorption of a photon to generate a large permeability for monovalent and divalent cations. ChR2 desensitizes in continuous light to a smaller steady-state conductance. Recovery from desensitization is accelerated by extracellular H+ and negative membrane potential, whereas closing of the ChR2 ion channel is decelerated by intracellular H+. ChR2 is expressed mainly in C. reinhardtii under low-light conditions, suggesting involvement in photoreception in dark-adapted cells. The predicted seven-transmembrane α helices of ChR2 are characteristic for G protein-coupled receptors but reflect a different motif for a cation-selective ion channel. Finally, we demonstrate that ChR2 may be used to depolarize small or large cells, simply by illumination.


Nature | 2011

Neocortical excitation/inhibition balance in information processing and social dysfunction

Ofer Yizhar; Lief E. Fenno; Matthias Prigge; Franziska Schneider; Thomas J. Davidson; Daniel J. O’Shea; Vikaas S. Sohal; Inbal Goshen; Joel Finkelstein; Jeanne T. Paz; Katja Stehfest; Roman Fudim; Charu Ramakrishnan; John R. Huguenard; Peter Hegemann; Karl Deisseroth

Severe behavioural deficits in psychiatric diseases such as autism and schizophrenia have been hypothesized to arise from elevations in the cellular balance of excitation and inhibition (E/I balance) within neural microcircuitry. This hypothesis could unify diverse streams of pathophysiological and genetic evidence, but has not been susceptible to direct testing. Here we design and use several novel optogenetic tools to causally investigate the cellular E/I balance hypothesis in freely moving mammals, and explore the associated circuit physiology. Elevation, but not reduction, of cellular E/I balance within the mouse medial prefrontal cortex was found to elicit a profound impairment in cellular information processing, associated with specific behavioural impairments and increased high-frequency power in the 30–80 Hz range, which have both been observed in clinical conditions in humans. Consistent with the E/I balance hypothesis, compensatory elevation of inhibitory cell excitability partially rescued social deficits caused by E/I balance elevation. These results provide support for the elevated cellular E/I balance hypothesis of severe neuropsychiatric disease-related symptoms.


Nature Neuroscience | 2010

Ultrafast optogenetic control

Lisa A. Gunaydin; Ofer Yizhar; Andre Berndt; Vikaas S. Sohal; Karl Deisseroth; Peter Hegemann

Channelrhodopsins such as channelrhodopsin-2 (ChR2) can drive spiking with millisecond precision in a wide variety of cells, tissues and animal species. However, several properties of this protein have limited the precision of optogenetic control. First, when ChR2 is expressed at high levels, extra spikes (for example, doublets) can occur in response to a single light pulse, with potential implications as doublets may be important for neural coding. Second, many cells cannot follow ChR2-driven spiking above the gamma (∼40 Hz) range in sustained trains, preventing temporally stationary optogenetic access to a broad and important neural signaling band. Finally, rapid optically driven spike trains can result in plateau potentials of 10 mV or more, causing incidental upstates with information-processing implications. We designed and validated an engineered opsin gene (ChETA) that addresses all of these limitations (profoundly reducing extra spikes, eliminating plateau potentials and allowing temporally stationary, sustained spike trains up to at least 200 Hz).


Nature Neuroscience | 2008

Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri

Feng Zhang; Matthias Prigge; Florent Beyrière; Satoshi P. Tsunoda; Joanna Mattis; Ofer Yizhar; Peter Hegemann; Karl Deisseroth

The introduction of two microbial opsin–based tools, channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), to neuroscience has generated interest in fast, multimodal, cell type–specific neural circuit control. Here we describe a cation-conducting channelrhodopsin (VChR1) from Volvox carteri that can drive spiking at 589 nm, with excitation maximum red-shifted ∼70 nm compared with ChR2. These results demonstrate fast photostimulation with yellow light, thereby defining a functionally distinct third category of microbial rhodopsin proteins.


Nature Neuroscience | 2009

Bi-stable neural state switches

Andre Berndt; Ofer Yizhar; Lisa A. Gunaydin; Peter Hegemann; Karl Deisseroth

Here we describe bi-stable channelrhodopsins that convert a brief pulse of light into a stable step in membrane potential. These molecularly engineered probes nevertheless retain millisecond-scale temporal precision. Photocurrents can be precisely initiated and terminated with different colors of light, but operate at vastly longer time scales than conventional channelrhodopsins as a result of modification at the C128 position that extends the lifetime of the open state. Because of their enhanced kinetic stability, these step-function tools are also effectively responsive to light at orders of magnitude lower intensity than wild-type channelrhodopsins. These molecules therefore offer important new capabilities for a broad range of in vivo applications.


Chemical Reviews | 2014

Microbial and Animal Rhodopsins: Structures, Functions, and Molecular Mechanisms

Oliver P. Ernst; David T. Lodowski; Marcus Elstner; Peter Hegemann; Leonid S. Brown; Hideki Kandori

Organisms of all domains of life use photoreceptor proteins to sense and respond to light. The light-sensitivity of photoreceptor proteins arises from bound chromophores such as retinal in retinylidene proteins, bilin in biliproteins, and flavin in flavoproteins. Rhodopsins found in Eukaryotes, Bacteria, and Archaea consist of opsin apoproteins and a covalently linked retinal which is employed to absorb photons for energy conversion or the initiation of intra- or intercellular signaling.1 Both functions are important for organisms to survive and to adapt to the environment. While lower organisms utilize the family of microbial rhodopsins for both purposes, animals solely use a different family of rhodopsins, a specialized subset of G-protein-coupled receptors (GPCRs).1,2 Animal rhodopsins, for example, are employed in visual and nonvisual phototransduction, in the maintenance of the circadian clock and as photoisomerases.3,4 While sharing practically no sequence similarity, microbial and animal rhodopsins, also termed type-I and type-II rhodopsins, respectively, share a common architecture of seven transmembrane α-helices (TM) with the N- and C-terminus facing out- and inside of the cell, respectively (Figure ​(Figure11).1,5 Retinal is attached by a Schiff base linkage to the e-amino group of a lysine side chain in the middle of TM7 (Figures ​(Figures11 and ​and2).2). The retinal Schiff base (RSB) is protonated (RSBH+) in most cases, and changes in protonation state are integral to the signaling or transport activity of rhodopsins. Figure 1 Topology of the retinal proteins. (A) These membrane proteins contain seven α-helices (typically denoted helix A to G in microbial opsins and TM1 to 7 in the animal opsins) spanning the lipid bilayer. The N-terminus faces the outside of the cell ...


Frontiers in Molecular Neuroscience | 2013

Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics

Jasper Akerboom; Nicole Carreras Calderón; Lin Tian; Sebastian Wabnig; Matthias Prigge; Johan Tolö; Andrew Gordus; Michael B. Orger; Kristen E. Severi; John J. Macklin; Ronak Patel; Stefan R. Pulver; Trevor J. Wardill; Elisabeth Fischer; Christina Schüler; Tsai-Wen Chen; Karen S. Sarkisyan; Jonathan S. Marvin; Cornelia I. Bargmann; Douglas S. Kim; Sebastian Kügler; Leon Lagnado; Peter Hegemann; Alexander Gottschalk; Eric R. Schreiter; Loren L. Looger

Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Here we describe red, single-wavelength GECIs, “RCaMPs,” engineered from circular permutation of the thermostable red fluorescent protein mRuby. High-resolution crystal structures of mRuby, the red sensor RCaMP, and the recently published red GECI R-GECO1 give insight into the chromophore environments of the Ca2+-bound state of the sensors and the engineered protein domain interfaces of the different indicators. We characterized the biophysical properties and performance of RCaMP sensors in vitro and in vivo in Caenorhabditis elegans, Drosophila larvae, and larval zebrafish. Further, we demonstrate 2-color calcium imaging both within the same cell (registering mitochondrial and somatic [Ca2+]) and between two populations of cells: neurons and astrocytes. Finally, we perform integrated optogenetics experiments, wherein neural activation via channelrhodopsin-2 (ChR2) or a red-shifted variant, and activity imaging via RCaMP or GCaMP, are conducted simultaneously, with the ChR2/RCaMP pair providing independently addressable spectral channels. Using this paradigm, we measure calcium responses of naturalistic and ChR2-evoked muscle contractions in vivo in crawling C. elegans. We systematically compare the RCaMP sensors to R-GECO1, in terms of action potential-evoked fluorescence increases in neurons, photobleaching, and photoswitching. R-GECO1 displays higher Ca2+ affinity and larger dynamic range than RCaMP, but exhibits significant photoactivation with blue and green light, suggesting that integrated channelrhodopsin-based optogenetics using R-GECO1 may be subject to artifact. Finally, we create and test blue, cyan, and yellow variants engineered from GCaMP by rational design. This engineered set of chromatic variants facilitates new experiments in functional imaging and optogenetics.


Nature | 2012

Crystal structure of the channelrhodopsin light-gated cation channel

Hideaki E. Kato; Feng Zhang; Ofer Yizhar; Charu Ramakrishnan; Tomohiro Nishizawa; Kunio Hirata; Jumpei Ito; Yusuke Aita; Tomoya Tsukazaki; Shigehiko Hayashi; Peter Hegemann; Andrés D. Maturana; Ryuichiro Ishitani; Karl Deisseroth; Osamu Nureki

Channelrhodopsins (ChRs) are light-gated cation channels derived from algae that have shown experimental utility in optogenetics; for example, neurons expressing ChRs can be optically controlled with high temporal precision within systems as complex as freely moving mammals. Although ChRs have been broadly applied to neuroscience research, little is known about the molecular mechanisms by which these unusual and powerful proteins operate. Here we present the crystal structure of a ChR (a C1C2 chimaera between ChR1 and ChR2 from Chlamydomonas reinhardtii) at 2.3 Å resolution. The structure reveals the essential molecular architecture of ChRs, including the retinal-binding pocket and cation conduction pathway. This integration of structural and electrophysiological analyses provides insight into the molecular basis for the remarkable function of ChRs, and paves the way for the precise and principled design of ChR variants with novel properties.


Proceedings of the National Academy of Sciences of the United States of America | 2011

High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels

Andre Berndt; Philipp Schoenenberger; Joanna Mattis; Kay M. Tye; Karl Deisseroth; Peter Hegemann; Thomas G. Oertner

Channelrhodopsin-2 (ChR2) has become an indispensable tool in neuroscience, allowing precise induction of action potentials with short light pulses. A limiting factor for many optophysiological experiments is the relatively small photocurrent induced by ChR2. We screened a large number of ChR2 point mutants and discovered a dramatic increase in photocurrent amplitude after threonine-to-cysteine substitution at position 159. When we tested the T159C mutant in hippocampal pyramidal neurons, action potentials could be induced at very low light intensities, where currently available channelrhodopsins were unable to drive spiking. Biophysical characterization revealed that the kinetics of most ChR2 variants slows down considerably at depolarized membrane potentials. We show that the recently published E123T substitution abolishes this voltage sensitivity and speeds up channel kinetics. When we combined T159C with E123T, the resulting double mutant delivered fast photocurrents with large amplitudes and increased the precision of single action potential induction over a broad range of frequencies, suggesting it may become the standard for light-controlled activation of neurons.


Biophysical Journal | 2003

Crystal Structures and Molecular Mechanism of a Light−Induced Signaling Switch: The Phot−LOV1 Domain from Chlamydomonas reinhardtii

Roman Fedorov; Ilme Schlichting; Elisabeth Hartmann; Tatjana Domratcheva; Markus Fuhrmann; Peter Hegemann

Phot proteins (phototropins and homologs) are blue-light photoreceptors that control mechanical processes like phototropism, chloroplast relocation, or guard-cell opening in plants. Phot receptors consist of two flavin mononucleotide (FMN)-binding light, oxygen, or voltage (LOV) domains and a C-terminal serine/threonine kinase domain. We determined crystal structures of the LOV1 domain of Phot1 from the green alga Chlamydomonas reinhardtii in the dark and illuminated state to 1.9 A and 2.8 A resolution, respectively. The structure resembles that of LOV2 from Adiantum (Crosson, S. and K. Moffat. 2001. PROC: Natl. Acad. Sci. USA. 98:2995-3000). In the resting dark state of LOV1, the reactive Cys-57 is present in two conformations. Blue-light absorption causes formation of a proposed active signaling state that is characterized by a covalent bond between the flavin C4a and the thiol of Cys-57. There are differences around the FMN chromophore but no large overall conformational changes. Quantum chemical calculations based on the crystal structures revealed the electronic distribution in the active site during the photocycle. The results suggest trajectories for electrons, protons, and the active site cysteine and offer an interpretation of the reaction mechanism.

Collaboration


Dive into the Peter Hegemann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tilo Mathes

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franziska Schneider

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Katja Stehfest

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Matthias Prigge

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Eglof Ritter

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Satoshi P. Tsunoda

Humboldt University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge