Eglof Ritter
Humboldt University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eglof Ritter.
Journal of Biological Chemistry | 2008
Eglof Ritter; Katja Stehfest; Andre Berndt; Peter Hegemann; Franz Bartl
Channelrhodopsin-2 (ChR2) is a microbial type rhodopsin and a light-gated cation channel that controls phototaxis in Chlamydomonas. We expressed ChR2 in COS-cells, purified it, and subsequently investigated this unusual photoreceptor by flash photolysis and UV-visible and Fourier transform infrared difference spectroscopy. Several transient photoproducts of the wild type ChR2 were identified, and their kinetics and molecular properties were compared with those of the ChR2 mutant E90Q. Based on the spectroscopic data we developed a model of the photocycle comprising six distinguishable intermediates. This photocycle shows similarities to the photocycle of the ChR2-related Channelrhodopsin of Volvox but also displays significant differences. We show that molecular changes include retinal isomerization, changes in hydrogen bonding of carboxylic acids, and large alterations of the protein backbone structure. These alterations are stronger than those observed in the photocycle of other microbial rhodopsins like bacteriorhodopsin and are related to those occurring in animal rhodopsins. UV-visible and Fourier transform infrared difference spectroscopy revealed two late intermediates with different time constants of τ = 6 and 40 s that exist during the recovery of the dark state. The carboxylic side chain of Glu90 is involved in the slow transition. The molecular changes during the ChR2 photocycle are discussed with respect to other members of the rhodopsin family.
Journal of Biological Chemistry | 2003
Martin Heck; Sandra A. Schädel; Dieter Maretzki; Franz J. Bartl; Eglof Ritter; Krzysztof Palczewski; Klaus Peter Hofmann
Vertebrate rhodopsin consists of the apoprotein opsin and the chromophore 11-cis-retinal covalently linked via a protonated Schiff base. Upon photoisomerization of the chromophore to all-trans-retinal, the retinylidene linkage hydrolyzes, and all-trans-retinal dissociates from opsin. The pigment is eventually restored by recombining with enzymatically produced 11-cis-retinal. All-trans-retinal release occurs in parallel with decay of the active form, metarhodopsin (Meta) II, in which the original Schiff base is intact but deprotonated. The intermediates formed during Meta II decay include Meta III, with the original Schiff base reprotonated, and Meta III-like pseudo-photoproducts. Using an intrinsic fluorescence assay, Fourier transform infrared spectroscopy, and UV-visible spectroscopy, we investigated Meta II decay in native rod disk membranes. Up to 40% of Meta III is formed without changes in the intrinsic Trp fluorescence and thus without all-trans-retinal release. NADPH, a cofactor for the reduction of all-trans-retinal to all-trans-retinol, does not accelerate Meta II decay nor does it change the amount of Meta III formed. However, Meta III can be photoconverted back to the Meta II signaling state. The data are described by two quasi-irreversible pathways, leading in parallel into Meta III or into release of all-trans-retinal. Therefore, Meta III could be a form of rhodopsin that is storaged away, thus regulating photoreceptor regeneration.
Journal of Biological Chemistry | 2012
Kirstin Eisenhauer; Jens Kuhne; Eglof Ritter; Andr eacute Berndt; Steffen Wolf; Erik Freier; Franz Bartl; Peter Hegemann; Klaus Gerwert
Background: Channelrhodopsin-2 is a light-gated ion channel extensively used in optogenetics. Results: Glu-90 is deprotonated in the open state and is crucial for ion selectivity. Conclusion: Protonation change of Glu-90 is part of the opening/closing of the conductive pore, and the functional protein unit is assumed to be the monomer. Significance: Understanding the gating mechanism is necessary for optimizing this optogenetic tool. The light-activated microbial ion channel channelrhodopsin-2 (ChR2) is a powerful tool to study cellular processes with high spatiotemporal resolution in the emerging field of optogenetics. To customize the channel properties for optogenetic experiments, a detailed understanding of its molecular reaction mechanism is essential. Here, Glu-90, a key residue involved in the gating and selectivity mechanism of the ion channel is characterized in detail. The deprotonation of Glu-90 during the photocycle is elucidated by time-resolved FTIR spectroscopy, which seems to be part of the opening mechanism of the conductive pore. Furthermore, Glu-90 is crucial to ion selectivity as also revealed by mutation of this residue combined with voltage clamp experiments. By dynamic homology modeling, we further hypothesized that the conductive pore is flanked by Glu-90 and located between helices A, B, C, and G.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Eglof Ritter; Peter W. Hildebrand; Oliver P. Ernst; Patrick Scheerer; Klaus Peter Hofmann; Martin Heck
In the retinal binding pocket of rhodopsin, a Schiff base links the retinal ligand covalently to the Lys296 side chain. Light transforms the inverse agonist 11-cis-retinal into the agonist all-trans-retinal, leading to the active Meta II state. Crystal structures of Meta II and the active conformation of the opsin apoprotein revealed two openings of the 7-transmembrane (TM) bundle towards the hydrophobic core of the membrane, one between TM1/TM7 and one between TM5/TM6, respectively. Computational analysis revealed a putative ligand channel connecting the openings and traversing the binding pocket. Identified constrictions within the channel motivated this study of 35 rhodopsin mutants in which single amino acids lining the channel were replaced. 11-cis-retinal uptake and all-trans-retinal release were measured using UV/visible and fluorescence spectroscopy. Most mutations slow or accelerate both uptake and release, often with opposite effects. Mutations closer to the Lys296 active site show larger effects. The nucleophile hydroxylamine accelerates retinal release 80 times but the action profile of the mutants remains very similar. The data show that the mutations do not probe local channel permeability but rather affect global protein dynamics, with the focal point in the ligand pocket. We propose a model for retinal/receptor interaction in which the active receptor conformation sets the open state of the channel for 11-cis-retinal and all-trans-retinal, with positioning of the ligand at the active site as the kinetic bottleneck. Although other G protein-coupled receptors lack the covalent link to the protein, the access of ligands to their binding pocket may follow similar schemes.
Journal of Biological Chemistry | 2005
Franz J. Bartl; Olaf Fritze; Eglof Ritter; Rolf Herrmann; Vladimir Kuksa; Krzysztof Palczewski; Klaus Peter Hofmann; Oliver P. Ernst
The visual process in rod cells is initiated by absorption of a photon in the rhodopsin retinal chromophore and consequent retinal cis/trans-isomerization. The ring structure of retinal is thought to be needed to transmit the photonic energy into conformational changes culminating in the active metarhodopsin II (Meta II) intermediate. Here, we demonstrate that cis-acyclic retinals, lacking four carbon atoms of the ring, can activate rhodopsin. Detailed analysis of the activation pathway showed that, although the photoproduct pathway is more complex, Meta II formed with almost normal kinetics. However, lack of the ring structure resulted in a low amount of Meta II and a fast decay of activity. We conclude that the main role of the ring structure is to maintain the active state, thus specifying a mechanism of activation by a partial agonist of the G protein-coupled receptor rhodopsin.
Journal of Molecular Biology | 2010
Katja Stehfest; Eglof Ritter; Andre Berndt; Franz Bartl; Peter Hegemann
Channelrhodopsins (ChRs) of green algae such as Chlamydomonas are used as neuroscience tools to specifically depolarize cells with light. A crude model of the ChR2 photocycle has been recently established, but details of the photoreactions are widely unknown. Here, we present the photoreactions of a slow-cycling ChR2 mutant (step function rhodopsin), with C128 replaced by threonine and 200-fold extended lifetime of the conducting-state P520. At a late state of the photocycle, a fraction of the proteins branches off into an inactive species, P380, which accumulates during prolonged illumination. At neutral pH, P380 is converted into P353, a species with a characteristic fine-structured spectrum that is interpreted as retroretinyl chromophore. The described branching reactions should be considered, when ChR is used as a neuroscience tool, especially in the case of fluorescence imaging at high light intensities.
Journal of Biological Chemistry | 2002
Vladimir Kuksa; Franz J. Bartl; Tadao Maeda; Geeng-Fu Jang; Eglof Ritter; Martin Heck; J. Preston Van Hooser; Yan Liang; Slawomir Filipek; Michael H. Gelb; Klaus Peter Hofmann; Krzysztof Palczewski
Phototransduction is initiated by the photoisomerization of rhodopsin (Rho) chromophore 11-cis-retinylidene to all-trans-retinylidene. Here, using Rho regenerated with retinal analogs with different ring sizes, which prevent isomerization around the C11=C12 double bond, the activation mechanism of this G-protein-coupled receptor was investigated. We demonstrate that 11-cis-7-ring-Rho does not activate G-protein in vivo and in vitro, and that it does not isomerize along other double bonds, suggesting that it fits tightly into the binding site of opsin. In contrast, bleaching 11-cis-6-ring-Rho modestly activates phototransductionin vivo and at low pH in vitro. These results reveal that partial activation is caused by isomerization along other double bonds in more rigid 6-locked retinal isomers and protonation of key residues by lowering pH in 11-cis-6-ring-Rhos. Full activation is not achieved, because isomerization does not induce a complete set of conformational rearrangements of Rho. These results with 6- and 7-ring-constrained retinoids provide new insights into Rho activation and suggest a potential use of locked retinals, particularly 11-cis-7-ring-retinal, to inactivate opsin in some retinal degeneration diseases.
Angewandte Chemie | 2015
Jens Kuhne; Kirstin Eisenhauer; Eglof Ritter; Peter Hegemann; Klaus Gerwert; Franz Bartl
Channelrhodopsins (ChRs) are light-gated ion channels that are widely used in optogenetics. They allow precise control of neuronal activity with light, but a detailed understanding of how the channel is gated and the ions are conducted is still lacking. The recent determination of the X-ray structural model in the closed state marks an important milestone. Herein the open state structure is presented and the early formation of the ion conducting pore is elucidated in atomic detail using time-resolved FTIR spectroscopy. Photo-isomerization of the retinal-chromophore causes a downward movement of the highly conserved E90, which opens the pore. Molecular dynamic (MD) simulations show that water molecules invade through this opened pore, Helix 2 tilts and the channel fully opens within ms. Since E90 is a highly conserved residue, the proposed E90-Helix2-tilt (EHT) model might describe a general activation mechanism and provides a new avenue for further mechanistic studies and engineering.
Journal of Biological Chemistry | 2013
Eglof Ritter; Patrick Piwowarski; Peter Hegemann; Franz Bartl
Background: Channelrhodopsins are light-gated ion channels of microalgae. Results: By FTIR spectroscopy, we identified three different dark and two photoswitchable light-adapted states of the ChR-C128T mutant. Conclusion: We propose a photocycle model that explains both spectroscopic and electrophysiological data. Significance: Color-dependent equilibria determine the stationary photocurrents in ChR applications (optogenetics). Channelrhodopsins are microbial type rhodopsins that operate as light-gated ion channels. Largely prolonged lifetimes of the conducting state of channelrhodopsin-2 may be achieved by mutations of crucial single amino acids, i.e. cysteine 128. Such mutants are of great scientific interest in the field of neurophysiology because they allow neurons to be switched on and off on demand (step function rhodopsins). Due to their slow photocycle, structural alterations of these proteins can be studied by vibrational spectroscopy in more detail than possible with wild type. Here, we present spectroscopic evidence that the photocycle of the C128T mutant involves three different dark-adapted states that are populated according to the wavelength and duration of the preceding illumination. Our results suggest an important role of multiphoton reactions and the previously described side reaction for dark state regeneration. Structural changes that cause formation and depletion of the assumed ion conducting state P520 are only small and follow larger changes that occur early and late in the photocycle, respectively. They require only minor structural rearrangements of amino acids near the retinal binding pocket and are triggered by all-trans/13-cis retinal isomerization, although additional isomerizations are also involved in the photocycle. We will discuss an extended photocycle model of this mutant on the basis of spectroscopic and electrophysiological data.
Photochemistry and Photobiology | 2008
Eglof Ritter; Matthias Elgeti; Franz J. Bartl
Rhodopsin, the visual pigment of the rod photoreceptor cell contains as its light‐sensitive cofactor 11‐cis retinal, which is bound by a protonated Schiff base between its aldehyde group and the Lys296 side chain of the apoprotein. Light activation is achieved by 11‐cis to all‐trans isomerization and subsequent thermal relaxation into the active, G protein‐binding metarhodopsin II state. Metarhodopsin II decays via two parallel pathways, which both involve hydrolysis of the Schiff base eventually to opsin and released all‐trans retinal. Subsequently, rhodopsins dark state is regenerated by a complicated retinal metabolism, termed the retinoid cycle. Unlike other retinal proteins, such as bacteriorhodopsin, this regeneration cycle cannot be short cut by light, because blue illumination of active metarhodopsin II does not lead back to the ground state but to the formation of largely inactive metarhodopsin III. In this review, mechanistic details of activating and deactivating pathways of rhodopsin, particularly concerning the roles of the retinal, are compared. Based on static and time‐resolved UV/Vis and FTIR spectroscopic data, we discuss a model of the light‐induced deactivation. We describe properties and photoreactions of metarhodopsin III and suggest potential roles of this intermediate for vision.