Peter J. Bond
Agency for Science, Technology and Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter J. Bond.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Benedict C. S. Cross; Peter J. Bond; Pawel Sadowski; Babal Kant Jha; Jaroslav Zak; Jonathan M. Goodman; Robert H. Silverman; Thomas A. Neubert; Ian R. Baxendale; David Ron; Heather P. Harding
IRE1 couples endoplasmic reticulum unfolded protein load to RNA cleavage events that culminate in the sequence-specific splicing of the Xbp1 mRNA and in the regulated degradation of diverse membrane-bound mRNAs. We report on the identification of a small molecule inhibitor that attains its selectivity by forming an unusually stable Schiff base with lysine 907 in the IRE1 endonuclease domain, explained by solvent inaccessibility of the imine bond in the enzyme-inhibitor complex. The inhibitor (abbreviated 4μ8C) blocks substrate access to the active site of IRE1 and selectively inactivates both Xbp1 splicing and IRE1-mediated mRNA degradation. Surprisingly, inhibition of IRE1 endonuclease activity does not sensitize cells to the consequences of acute endoplasmic reticulum stress, but rather interferes with the expansion of secretory capacity. Thus, the chemical reactivity and sterics of a unique residue in the endonuclease active site of IRE1 can be exploited by selective inhibitors to interfere with protein secretion in pathological settings.
Journal of Chemical Information and Modeling | 2012
Johannes Kirchmair; Mark J. Williamson; Jonathan D. Tyzack; Lu Ping Tan; Peter J. Bond; Andreas Bender; Robert C. Glen
Metabolism of xenobiotics remains a central challenge for the discovery and development of drugs, cosmetics, nutritional supplements, and agrochemicals. Metabolic transformations are frequently related to the incidence of toxic effects that may result from the emergence of reactive species, the systemic accumulation of metabolites, or by induction of metabolic pathways. Experimental investigation of the metabolism of small organic molecules is particularly resource demanding; hence, computational methods are of considerable interest to complement experimental approaches. This review provides a broad overview of structure- and ligand-based computational methods for the prediction of xenobiotic metabolism. Current computational approaches to address xenobiotic metabolism are discussed from three major perspectives: (i) prediction of sites of metabolism (SOMs), (ii) elucidation of potential metabolites and their chemical structures, and (iii) prediction of direct and indirect effects of xenobiotics on metabolizing enzymes, where the focus is on the cytochrome P450 (CYP) superfamily of enzymes, the cardinal xenobiotics metabolizing enzymes. For each of these domains, a variety of approaches and their applications are systematically reviewed, including expert systems, data mining approaches, quantitative structure–activity relationships (QSARs), and machine learning-based methods, pharmacophore-based algorithms, shape-focused techniques, molecular interaction fields (MIFs), reactivity-focused techniques, protein–ligand docking, molecular dynamics (MD) simulations, and combinations of methods. Predictive metabolism is a developing area, and there is still enormous potential for improvement. However, it is clear that the combination of rapidly increasing amounts of available ligand- and structure-related experimental data (in particular, quantitative data) with novel and diverse simulation and modeling approaches is accelerating the development of effective tools for prediction of in vivo metabolism, which is reflected by the diverse and comprehensive data sources and methods for metabolism prediction reviewed here. This review attempts to survey the range and scope of computational methods applied to metabolism prediction and also to compare and contrast their applicability and performance.
Structure | 2008
Kathryn A. Scott; Peter J. Bond; Anthony Ivetac; Alan Chetwynd; Syma Khalid; Mark S.P. Sansom
Complete determination of a membrane protein structure requires knowledge of the protein position within the lipid bilayer. As the number of determined structures of membrane proteins increases so does the need for computational methods which predict their position in the lipid bilayer. Here we present a coarse-grained molecular dynamics approach to lipid bilayer self-assembly around membrane proteins. We demonstrate that this method can be used to predict accurately the protein position in the bilayer for membrane proteins with a range of different sizes and architectures.
FEBS Letters | 2003
Oliver Beckstein; Philip C. Biggin; Peter J. Bond; Joanne N. Bright; Carmen Domene; Alessandro Grottesi; John Holyoake; Mark S.P. Sansom
Ion channels are gated, i.e. they can switch conformation between a closed and an open state. Molecular dynamics simulations may be used to study the conformational dynamics of ion channels and of simple channel models. Simulations on model nanopores reveal that a narrow (<4 Å) hydrophobic region can form a functionally closed gate in the channel and can be opened by either a small (∼1 Å) increase in pore radius or an increase in polarity. Modelling and simulation studies confirm the importance of hydrophobic gating in K channels, and support a model in which hinge‐bending of the pore‐lining M2 (or S6 in Kv channels) helices underlies channel gating. Simulations of a simple outer membrane protein, OmpA, indicate that a gate may also be formed by interactions of charged side chains within a pore, as is also the case in ClC channels.
Journal of Molecular Biology | 2003
Peter J. Bond; Mark S.P. Sansom
The bacterial outer membrane protein OmpA is one of the few membrane proteins whose structure has been solved both by X-ray crystallography and by NMR. Crystals were obtained in the presence of detergent, and the NMR structure is of the protein in a detergent micelle. We have used 10 ns duration molecular dynamics simulations to compare the behaviour of OmpA in a detergent micelle and in a phospholipid bilayer. The dynamic fluctuations of the protein structure seem to be ca 1.5 times greater in the micelle environment than in the lipid bilayer. There are subtle differences between the nature of OmpA-detergent and OmpA-lipid interactions. As a consequence of the enhanced flexibility of the OmpA protein in the micellar environment, side-chain torsion angle changes are such as to lead to formation of a continuous pore through the centre of the OmpA molecule. This may explain the experimentally observed channel formation by OmpA.
Biochemical Society Transactions | 2008
Mark S.P. Sansom; Kathryn A. Scott; Peter J. Bond
An understanding of the interactions of membrane proteins with a lipid bilayer environment is central to relating their structure to their function and stability. A high-throughput approach to prediction of membrane protein interactions with a lipid bilayer based on coarse-grained Molecular Dynamics simulations is described. This method has been used to develop a database of CG simulations (coarse-grained simulations) of membrane proteins (http://sbcb.bioch.ox.ac.uk/cgdb). Comparison of CG simulations and AT simulations (atomistic simulations) of lactose permease reveals good agreement between the two methods in terms of predicted lipid headgroup contacts. Both CG and AT simulations predict considerable local bilayer deformation by the voltage sensor domain of the potassium channel KvAP.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Peter J. Bond; Mark S.P. Sansom
Coarse-grained molecular dynamics simulations are used to explore the interaction with a phospholipid bilayer of the voltage sensor (VS) domain and the S4 helix from the archaebacterial voltage-gated potassium (Kv) channel KvAP. Multiple 2-μs self-assembly simulations reveal that the isolated S4 helix may adopt either interfacial or transmembrane (TM) locations with approximately equal probability. In the TM state, the insertion of the voltage-sensing region of S4 is facilitated via local bilayer deformation that, combined with side chain “snorkeling,” enables its Arg side chains to interact with lipid headgroups and water. Multiple 0.2-μs self-assembly simulations of the VS domain are also performed, along with simulations of MscL and KcsA, to permit comparison with more “canonical” integral membrane protein structures. All three stably adopt a TM orientation within a bilayer. For MscL and KcsA, there is no significant bilayer deformation. In contrast, for the VS, there is considerable local deformation, which is again primarily due to the lipid-exposed S4. It is shown that for both the VS and isolated S4 helix, the positively charged side chains of S4 are accommodated within the membrane through a combination of stabilizing interactions with lipid glycerol and headgroup regions, water, and anionic side chains. Our results support the possibility that bilayer deformation around key gating charge residues in Kv channels may result in “focusing” of the electrostatic field, and indicate that, when considering competing models of voltage-sensing, it is essential to consider the dynamics and structure of not only the protein but also of the local lipid environment.
Biophysical Journal | 2002
Peter J. Bond; José D. Faraldo-Gómez; Mark S.P. Sansom
The bacterial outer membrane protein OmpA is composed of an N-terminal 171-residue beta-barrel domain (OmpA(171)) that spans the bilayer and a periplasmic, C-terminal domain of unknown structure. OmpA has been suggested to primarily serve a structural role, as no continuous pore through the center of the barrel can be discerned in the crystal structure of OmpA(171). However, several groups have recorded ionic conductances for bilayer-reconstituted OmpA(171). To resolve this apparent paradox we have used molecular dynamics (MD) simulations on OmpA(171) to explore the conformational dynamics of the protein, in particular the possibility of transient formation of a central pore. A total of 19 ns of MD simulations of OmpA(171) have been run, and the results were analyzed in terms of 1) comparative behavior of OmpA(171) in different bilayer and bilayer-mimetic environments, 2) solvation states of OmpA(171), and 3) pore characteristics in different MD simulations. Significant mobility was observed for residues and water molecules within the beta-barrel. A simulation in which putative gate region side chains of the barrel interior were held in a non-native conformation led to an open pore, with a predicted conductance similar to experimental measurements. The OmpA(171) pore has been shown to be somewhat more dynamic than suggested by the crystal structure. A gating mechanism is proposed to explain its documented channel properties, involving a flickering isomerization of Arg138, forming alternate salt bridges with Glu52 (closed state) and Glu128 (open state).
Biochemistry | 2008
Peter J. Bond; Chze Ling Wee; Mark S.P. Sansom
Experimental and computational studies have indicated that hydrophobicity plays a key role in driving the insertion of transmembrane alpha-helices into lipid bilayers. Molecular dynamics simulations allow exploration of the nature of the interactions of transmembrane alpha-helices with their lipid bilayer environment. In particular, coarse-grained simulations have considerable potential for studying many aspects of membrane proteins, ranging from their self-assembly to the relation between their structure and function. However, there is a need to evaluate the accuracy of coarse-grained estimates of the energetics of transmembrane helix insertion. Here, three levels of complexity of model system have been explored to enable such an evaluation. First, calculated free energies of partitioning of amino acid side chains between water and alkane yielded an excellent correlation with experiment. Second, free energy profiles for transfer of amino acid side chains along the normal to a phosphatidylcholine bilayer were in good agreement with experimental and atomistic simulation studies. Third, estimation of the free energy profile for transfer of an arginine residue, embedded within a hydrophobic alpha-helix, to the center of a lipid bilayer gave a barrier of approximately 15 kT. Hence, there is a substantial barrier to membrane insertion for charged amino acids, but the coarse-grained model still underestimates the corresponding free energy estimate (approximately 29 kT) from atomistic simulations (Dorairaj, S., and Allen, T. W. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 4943-4948). Coarse-grained simulations were then used to predict the free energy profile for transfer of a simple model transmembrane alpha-helix (WALP23) across a lipid bilayer. The results indicated that a transmembrane orientation was favored by about -70 kT.
Proteins | 2004
José D. Faraldo-Gómez; Lucy R. Forrest; Marc Baaden; Peter J. Bond; Carmen Domene; George Patargias; Jonathan M. Cuthbertson; Mark S.P. Sansom
In the current report, we provide a quantitative analysis of the convergence of the sampling of conformational space accomplished in molecular dynamics simulations of membrane proteins of duration in the order of 10 nanoseconds. A set of proteins of diverse size and topology is considered, ranging from helical pores such as gramicidin and small β‐barrels such as OmpT, to larger and more complex structures such as rhodopsin and FepA. Principal component analysis of the Cα‐atom trajectories was employed to assess the convergence of the conformational sampling in both the transmembrane domains and the whole proteins, while the time‐dependence of the average structure was analyzed to obtain single‐domain information. The membrane‐embedded regions, particularly those of small or structurally simple proteins, were found to achieve reasonable convergence. By contrast, extra‐membranous domains lacking secondary structure are often markedly under‐sampled, exhibiting a continuous structural drift. This drift results in a significant imprecision in the calculated B‐factors, which detracts from any quantitative comparison to experimental data. In view of such limitations, we suggest that similar analyses may be valuable in simulation studies of membrane protein dynamics, in order to attach a level of confidence to any biologically relevant observations. Proteins 2004.