Roland G. Huber
Agency for Science, Technology and Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roland G. Huber.
Eurosurveillance | 2016
Sebastian Maurer-Stroh; Tze-Minn Mak; Yi-Kai Ng; Shiau-Pheng Phuah; Roland G. Huber; Jan K. Marzinek; Daniel A. Holdbrook; Raphael Tc Lee; Lin Cui; Raymond Tp Lin
Zika virus (ZIKV) is an ongoing global public health emergency with 70 countries and territories reporting evidence of ZIKV transmission since 2015. On 27 August 2016, Singapore reported its first case of local ZIKV transmission and identified an ongoing cluster. Here, we report the genome sequences of ZIKV strains from two cases and find through phylogenetic analysis that these strains form an earlier branch distinct from the recent large outbreak in the Americas.
JCI insight | 2017
Yiu-Wing Kam; Cheryl Yi-Pin Lee; Teck-Hui Teo; Shanshan W. Howland; Siti Naqiah Amrun; Fok-Moon Lum; Peter See; Nicholas Qing-Rong Kng; Roland G. Huber; Meihui Xu; Heng-Liang Tan; Andre Choo; Sebastian Maurer-Stroh; Florent Ginhoux; Katja Fink; Cheng-I Wang; Lisa F. P. Ng; Laurent Rénia
Zika virus (ZIKV) infections have been linked with neurological complications and congenital Zika syndrome. Given the high level of homology between ZIKV and the related flavivirus dengue virus (DENV), we investigated the level of cross-reactivity with ZIKV using a panel of DENV human mAbs. A majority of the mAbs showed binding to ZIKV virions, with several exhibiting neutralizing capacities against ZIKV in vitro. Three of the best ZIKV-neutralizing mAbs were found to recognize diverse epitopes on the envelope (E) glycoprotein: the highly conserved fusion-loop peptide, a conformation-specific epitope on the E monomer, and a quaternary epitope on the virion surface. The most potent ZIKV-neutralizing mAb (SIgN-3C) was assessed in 2 type I interferon receptor–deficient (IFNAR–/–) mouse models of ZIKV infection. Treatment of adult nonpregnant mice with SIgN-3C rescued mice from virus-induced weight loss and mortality. The SIgN-3C variant with Leu-to-Ala mutations in the Fc region (SIgN-3C-LALA) did not induce antibody-dependent enhancement (ADE) in vitro but provided similar levels of protection in vivo. In pregnant ZIKV-infected IFNAR–/– mice, treatment with SIgN-3C or SIgN-3C-LALA significantly reduced viral load in the fetal organs and placenta and abrogated virus-induced fetal growth retardation. Therefore, SIgN-3C-LALA holds promise as a ZIKV prophylactic and therapeutic agent.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Jitka Petrlova; Finja C. Hansen; Mariena J. A. van der Plas; Roland G. Huber; Matthias Mörgelin; Martin Malmsten; Peter J. Bond; Artur Schmidtchen
Significance The work summarized in this paper is based on the simple but unexpected observation that addition of lipopolysaccharide (LPS) or bacteria to human wound fluids leads to precipitation of protein aggregates, a phenomenon not observed in plasma. Using a broad mix of technologies ranging from biophysical, biochemical, and microbiological methods to fluorescence and electron microscopy, and from in silico modeling to studies on wound materials, we demonstrate here a previously undisclosed role of C-terminal thrombin fragments of about 11 kDa, involving LPS- and bacteria-induced aggregation and scavenging, facilitating clearance and microbial killing. Our findings provide a link between the major coagulation factor thrombin, innate immunity, and amyloid formation. Effective control of endotoxins and bacteria is crucial for normal wound healing. During injury, the key enzyme thrombin is formed, leading to generation of fibrin. Here, we show that human neutrophil elastase cleaves thrombin, generating 11-kDa thrombin-derived C-terminal peptides (TCPs), which bind to and form amorphous amyloid-like aggregates with both bacterial lipopolysaccharide (LPS) and gram-negative bacteria. In silico molecular modeling using atomic resolution and coarse-grained simulations corroborates our experimental observations, altogether indicating increased aggregation through LPS-mediated intermolecular contacts between clusters of TCP molecules. Upon bacterial aggregation, recombinantly produced TCPs induce permeabilization of Escherichia coli and phagocytic uptake. TCPs of about 11 kDa are present in acute wound fluids as well as in fibrin sloughs from patients with infected wounds. We noted aggregation and colocalization of LPS with TCPs in such fibrin material, which indicates the presence of TCP-LPS aggregates under physiological conditions. Apart from identifying a function of proteolyzed thrombin and its fragments, our findings provide an interesting link between the coagulation system, innate immunity, LPS scavenging, and protein aggregation/amyloid formation.
Plant Physiology | 2016
David J. Lea-Smith; Maite L. Ortiz-Suarez; Tchern Lenn; Dennis J. Nürnberg; Laura L. Baers; Matthew P. Davey; Lucia Parolini; Roland G. Huber; Charles A. R. Cotton; Giulia Mastroianni; Paolo Bombelli; Petra Ungerer; Tim J. Stevens; Alison G. Smith; Peter J. Bond; Conrad W. Mullineaux; Christopher J. Howe
Optimal growth and division of cyanobacteria depends upon hydrocarbon induced flexibility in the thylakoid membranes of cyanobacteria, via accumulation of these compounds within the lipid bilayer. Cyanobacteria are intricately organized, incorporating an array of internal thylakoid membranes, the site of photosynthesis, into cells no larger than other bacteria. They also synthesize C15-C19 alkanes and alkenes, which results in substantial production of hydrocarbons in the environment. All sequenced cyanobacteria encode hydrocarbon biosynthesis pathways, suggesting an important, undefined physiological role for these compounds. Here, we demonstrate that hydrocarbon-deficient mutants of Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 exhibit significant phenotypic differences from wild type, including enlarged cell size, reduced growth, and increased division defects. Photosynthetic rates were similar between strains, although a minor reduction in energy transfer between the soluble light harvesting phycobilisome complex and membrane-bound photosystems was observed. Hydrocarbons were shown to accumulate in thylakoid and cytoplasmic membranes. Modeling of membranes suggests these compounds aggregate in the center of the lipid bilayer, potentially promoting membrane flexibility and facilitating curvature. In vivo measurements confirmed that Synechococcus sp. PCC 7002 mutants lacking hydrocarbons exhibit reduced thylakoid membrane curvature compared to wild type. We propose that hydrocarbons may have a role in inducing the flexibility in membranes required for optimal cell division, size, and growth, and efficient association of soluble and membrane bound proteins. The recent identification of C15-C17 alkanes and alkenes in microalgal species suggests hydrocarbons may serve a similar function in a broad range of photosynthetic organisms.
ACS Nano | 2018
Joseph E. Chambers; Markéta Kubánková; Roland G. Huber; Ismeal López-Duarte; Edward Avezov; Peter J. Bond; Stefan J. Marciniak; Marina K. Kuimova
Microscopic viscosity (microviscosity) is a key determinant of diffusion in the cell and defines the rate of biological processes occurring at the nanoscale, including enzyme-driven metabolism and protein folding. Here we establish a rotor-based organelle viscosity imaging (ROVI) methodology that enables real-time quantitative mapping of cell microviscosity. This approach uses environment-sensitive dyes termed molecular rotors, covalently linked to genetically encoded probes to provide compartment-specific microviscosity measurements via fluorescence lifetime imaging. ROVI visualized spatial and temporal dynamics of microviscosity with suborganellar resolution, reporting on a microviscosity difference of nearly an order of magnitude between subcellular compartments. In the mitochondrial matrix, ROVI revealed several striking findings: a broad heterogeneity of microviscosity among individual mitochondria, unparalleled resilience to osmotic stress, and real-time changes in microviscosity during mitochondrial depolarization. These findings demonstrate the use of ROVI to explore the biophysical mechanisms underlying cell biological processes.
Progress in Biophysics & Molecular Biology | 2017
Roland G. Huber; Jan K. Marzinek; Daniel A. Holdbrook; Peter J. Bond
Viral pathogens are a significant source of human morbidity and mortality, and have a major impact on societies and economies around the world. One of the challenges inherent in targeting these pathogens with drugs is the tight integration of the viral life cycle with the hosts cellular machinery. However, the reliance of the virus on the host cell replication machinery is also an opportunity for therapeutic targeting, as successful entry- and exit-inhibitors have demonstrated. An understanding of the extracellular and intracellular structure and dynamics of the virion - as well as of the entry and exit pathways in host and vector cells - is therefore crucial to the advancement of novel antivirals. In recent years, advances in computing architecture and algorithms have begun to allow us to use simulations to study the structure and dynamics of viral ultrastructures at various stages of their life cycle in atomistic or near-atomistic detail. In this review, we outline specific challenges and solutions that have emerged to allow for structurally detailed modelling of viruses in silico. We focus on the history and state of the art of atomistic and coarse-grained approaches to simulate the dynamics of the large, macromolecular structures associated with viral infection, and on their usefulness in explaining and expanding upon experimental data. We discuss the types of interactions that need to be modeled to describe major components of the virus particle and advances in modelling techniques that allow for the treatment of these systems, highlighting recent key simulation studies.
PLOS Computational Biology | 2015
Roland G. Huber; Hao Fan; Peter J. Bond
ZAP–70 (Zeta-chain-associated protein kinase 70) is a tyrosine kinase that interacts directly with the activated T-cell receptor to transduce downstream signals, and is hence a major player in the regulation of the adaptive immune response. Dysfunction of ZAP–70 causes selective T cell deficiency that in turn results in persistent infections. ZAP–70 is activated by a variety of signals including phosphorylation of the kinase domain (KD), and binding of its regulatory tandem Src homology 2 (SH2) domains to the T cell receptor. The present study investigates molecular mechanisms of activation and inhibition of ZAP–70 via atomically detailed molecular dynamics simulation approaches. We report microsecond timescale simulations of five distinct states of the ZAP–70 KD, comprising apo, inhibited and three phosphorylated variants. Extensive analysis of local flexibility and correlated motions reveal crucial transitions between the states, thus elucidating crucial steps in the activation mechanism of the ZAP–70 KD. Furthermore, we rationalize previously observed staurosporine-bound crystal structures, suggesting that whilst the KD superficially resembles an “active-like” conformation, the inhibitor modulates the underlying protein dynamics and restricts it in a compact, rigid state inaccessible to ligands or cofactors. Finally, our analysis reveals a novel, potentially druggable pocket in close proximity to the activation loop of the kinase, and we subsequently use its structure in fragment-based virtual screening to develop a pharmacophore model. The pocket is distinct from classical type I or type II kinase pockets, and its discovery offers promise in future design of specific kinase inhibitors, whilst mutations in residues associated with this pocket are implicated in immunodeficiency in humans.
bioRxiv | 2018
Roland G. Huber; Xin Ni Lim; Wy Ching Ng; Adelene Sim; Hui Xian Poh; Yang Shen; Su Ying Lim; Anna Karin Beatrice Sundstrom; Xuyang Sun; Jong Ghut Aw; Horng Khit Too; Peng Hee Boey; Andreas Wilm; Tanu Chawla; Ming Ju Choy; Lu Jiang; Paola Florez de Sessions; Xian Jun Loh; Sylvie Alonso; Martin L. Hibberd; Niranjan Nagarajan; Eng Eong Ooi; Peter J. Bond; October M. Sessions; Yue Wan
Dengue and Zika are clinically important members of the Flaviviridae family that utilizes an 11kb positive strand RNA for genome regulation. While structures have been mapped primarily in the UTRs, much remains to be learnt about how the rest of the genome folds to enable function. Here, we performed secondary structure and pair-wise interaction mapping on four dengue serotypes and four Zika strains in their native virus particles and infected cells. Comparative analysis of SHAPE reactivities across serotypes nominated potentially functional regions that are highly structured, show structure conservation, and low synonymous mutation rates, including a structure associated with ribosome pausing. Pair-wise interaction mapping by SPLASH further reveals new pair-wise interactions, in addition to the known circularization sequence. 40% of pair-wise interactions form alternative structures, suggesting extensive structural heterogeneity. Analysis of shared pair-wise interactions between serotypes revealed macro-organization whereby interactions are preserved at their physical locations, beyond their sequence identities. In addition, structure mapping of virus genomes released in solution-as well as inside host cells-showed that other helicases, in addition to the ribosome, play a role in unwinding viral structures inside cells. Mutational experiments that disrupt in cell and in virion pair-wise interactions result in virus attenuation, demonstrating their importance during the virus life-cycle.
Journal of Chemical Theory and Computation | 2018
Jan K. Marzinek; Nirmalya Bag; Roland G. Huber; Daniel A. Holdbrook; Thorsten Wohland; Chandra Verma; Peter J. Bond
During host cell infection by flaviviruses such as dengue and Zika, acidic pH within the endosome triggers a conformational change in the envelope protein on the outer surface of the virion. This results in exposure of the ∼15 residue fusion peptide (FP) region, freeing it to induce fusion between the viral and endosomal membranes. A better understanding of the conformational dynamics of the FP in the presence of membranes, and the basis for its selectivity for anionic lipid species present within the endosome, would facilitate its therapeutic targeting with antiviral drugs and antibodies. In this work, multiscale modeling, simulations, and free energy calculations (including a total of ∼75 μs of atomic-resolution sampling), combined with imaging total internal reflection fluorescence correlation spectroscopy experiments, were employed to investigate the mechanisms of interaction of FP variants with lipid bilayers. Wild-type FPs (in the presence or absence of a fluorescein isothiocyanate tag) were shown to possess a funneled conformational landscape governing their exit from solvent and penetration into the lipid phase and to exhibit an electrostatically favored >2-fold affinity for membranes containing anionic species over purely zwitterionic ones. Conversely, the landscape was abolished in a nonfunctional point mutant, leading to a 2-fold drop in host membrane affinity. Collectively, our data reveal how the highly conserved flavivirus FP has evolved to funnel its conformational space toward a maximally fusogenic state anchored within the endosomal membrane. Therapeutically targeting the accessible ensemble of FP conformations may represent a new, rational strategy for blocking viral infection.
ACS Chemical Biology | 2018
Priscilla L. S. Boon; Wuan Geok Saw; Xin Xiang Lim; Palur Venkata Raghuvamsi; Roland G. Huber; Jan K. Marzinek; Daniel A. Holdbrook; Ganesh S. Anand; Gerhard Grüber; Peter J. Bond
The 11 kDa, positively charged dengue capsid protein (C protein) exists stably as a homodimer and colocalizes with the viral genome within mature viral particles. Its core is composed of four alpha helices encompassing a small hydrophobic patch that may interact with lipids, but approximately 20% of the protein at the N-terminus is intrinsically disordered, making it challenging to elucidate its conformational landscape. Here, we combine small-angle X-ray scattering (SAXS), amide hydrogen-deuterium exchange mass spectrometry (HDXMS), and atomic-resolution molecular dynamics (MD) simulations to probe the dynamics of dengue C proteins. We show that the use of MD force fields (FFs) optimized for intrinsically disordered proteins (IDPs) is necessary to capture their conformational landscape and validate the computationally generated ensembles with reference to SAXS and HDXMS data. Representative ensembles of the C protein dimer are characterized by alternating, clamp-like exposure and occlusion of the internal hydrophobic patch, as well as by residual helical structure at the disordered N-terminus previously identified as a potential source of autoinhibition. Such dynamics are likely to determine the multifunctionality of the C protein during the flavivirus life cycle and hence impact the design of novel antiviral compounds.