Peter J. Flor
University of Regensburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter J. Flor.
Neuropharmacology | 1999
Fabrizio Gasparini; Kurt Lingenhöhl; Natacha Stoehr; Peter J. Flor; Micheline Heinrich; Ivo Vranesic; Michel Biollaz; Hans Allgeier; Roland Heckendorn; Stephan Urwyler; Mark A. Varney; Edwin C. Johnson; Stephen D. Hess; Sara P. Rao; Aida I. Sacaan; Emily M. Santori; Gönül Veliçelebi; Rainer Kuhn
In the present paper we describe 2-methyl-6-(phenylethynyl)-pyridine (MPEP) as a potent, selective and systemically active antagonist for the metabotropic glutamate receptor subtype 5 (mGlu5). At the human mGlu5a receptor expressed in recombinant cells, MPEP completely inhibited quisqualate-stimulated phosphoinositide (PI) hydrolysis with an IC50 value of 36 nM while having no agonist or antagonist activities at cells expressing the human mGlu1b receptor at concentrations up to 30 microM. When tested at group II and III receptors, MPEP did not show agonist or antagonist activity at 100 microM on human mGlu2, -3, -4a, -7b, and -8a receptors nor at 10 microM on the human mGlu6 receptor. Electrophysiological recordings in Xenopus laevis oocytes demonstrated no significant effect at 100 microM on human NMDA (NMDA1A/2A), rat AMPA (Glu3-(flop)) and human kainate (Glu6-(IYQ)) receptor subtypes nor at 10 microM on the human NMDA1A/2B receptor. In rat neonatal brain slices, MPEP inhibited DHPG-stimulated PI hydrolysis with a potency and selectivity similar to that observed on human mGlu receptors. Furthermore, in extracellular recordings in the CA1 area of the hippocampus in anesthetized rats, the microiontophoretic application of DHPG induced neuronal firing that was blocked when MPEP was administered by iontophoretic or intravenous routes. Excitations induced by microiontophoretic application of AMPA were not affected.
The EMBO Journal | 1992
Zsuzsanna Schwarz-Sommer; I Hue; Peter Huijser; Peter J. Flor; Rolf Hansen; F Tetens; W E Lönnig; Heinz Saedler; Hans Sommer
We have determined the structure of the floral homeotic deficiens (defA) gene whose mutants display sepaloid petals and carpelloid stamens, and have analysed its spatial and temporal expression pattern. In addition, several mutant alleles (morphoalleles) were studied. The results of these analyses define three functional domains of the DEF A protein and identify in the deficiens promoter a possible cis‐acting binding site for a transcription factor which specifically upregulates expression of deficiens in petals and stamens. In vitro DNA binding studies show that DEF A binds to specific DNA motifs as a heterodimer, together with the protein product of the floral homeotic globosa gene, thus demonstrating that the protein encoded by deficiens is a DNA binding protein. Furthermore, Northern analysis of a temperature sensitive allele at permissive and non‐permissive temperatures provides evidence for autoregulation of the persistent expression of deficiens throughout flower development. A possible mechanism of autoregulation is discussed.
Journal of Cerebral Blood Flow and Metabolism | 2001
Valeria Bruno; Giuseppe Battaglia; Agata Copani; Mara D'Onofrio; P. Di Iorio; Antonio De Blasi; Daniela Melchiorri; Peter J. Flor; Ferdinando Nicoletti
Metabotropic glutamate (mGlu) receptors have been considered as potential targets for neuroprotective drugs, but the lack of specific drugs has limited the development of neuroprotective strategies in experimental models of acute or chronic central nervous system (CNS) disorders. The advent of potent and centrally available subtype-selective ligands has overcome this limitation, leading to an extensive investigation of the role of mGlu receptor subtypes in neurodegeneration during the last 2 years. Examples of these drugs are the noncompetitive mGlu1 receptor antagonists, CPCCOEt and BAY-36-7620; the noncompetitive mGlu5 receptor antagonists, 2-methyl-6-(phenylethynyl)pyridine, SIB-1893, and SIB-1757; and the potent mGlu2/3 receptor agonists, LY354740 and LY379268. Pharmacologic blockade of mGlu1 or mGlu5 receptors or pharmacologic activation of mGlu2/3 or mGlu4/7/8 receptors produces neuroprotection in a variety of in vitro or in vivo models. MGlu1 receptor antagonists are promising drugs for the treatment of brain ischemia or for the prophylaxis of neuronal damage induced by synaptic hyperactivity. MGlu5 receptor antagonists may limit neuronal damage induced by a hyperactivity of N-methyl-d-aspartate (NMDA) receptors, because mGlu5 and NMDA receptors are physically and functionally connected in neuronal membranes. A series of observations suggest a potential application of mGlu5 receptor antagonists in chronic neurodegenerative disorders, such as amyotrophic lateral sclerosis and Alzheimer disease. MGlu2/3 receptor agonists inhibit glutamate release, but also promote the synthesis and release of neurotrophic factors in astrocytes. These drugs may therefore have a broad application as neuroprotective agents in a variety of CNS disorders. Finally, mGlu4/7/8 receptor agonists potently inhibit glutamate release and have a potential application in seizure disorders. The advantage of all these drugs with respect to NMDA or AMPA receptor agonists derives from the evidence that mGlu receptors do not “mediate,” but rather “modulate” excitatory synaptic transmission. Therefore, it can be expected that mGlu receptor ligands are devoid of the undesirable effects resulting from the inhibition of excitatory synaptic transmission, such as sedation or an impairment of learning and memory.
Journal of Biological Chemistry | 2000
Adriana Pagano; Doris Rüegg; Stephane Litschig; Natacha Stoehr; Christine Stierlin; Micheline Heinrich; Philipp Floersheim; Laurent Prézeau; Fiona Y. Carroll; Jean-Philippe Pin; Antonio Cambria; Ivo Vranesic; Peter J. Flor; Fabrizio Gasparini; Rainer Kuhn
We have investigated the mechanism of inhibition and site of action of the novel human metabotropic glutamate receptor 5 (hmGluR5) antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP), which is structurally unrelated to classical metabotropic glutamate receptor (mGluR) ligands. Schild analysis indicated that MPEP acts in a non-competitive manner. MPEP also inhibited to a large extent constitutive receptor activity in cells transiently overexpressing rat mGluR5, suggesting that MPEP acts as an inverse agonist. To investigate the molecular determinants that govern selective ligand binding, a mutagenesis study was performed using chimeras and single amino acid substitutions of hmGluR1 and hmGluR5. The mutants were tested for binding of the novel mGluR5 radioligand [3H]2-methyl-6-(3-methoxyphenyl)ethynyl pyridine (M-MPEP), a close analog of MPEP. Replacement of Ala-810 in transmembrane (TM) VII or Pro-655 and Ser-658 in TMIII with the homologous residues of hmGluR1 abolished radioligand binding. In contrast, the reciprocal hmGluR1 mutant bearing these three residues of hmGluR5 showed high affinity for [3H]M-MPEP. Radioligand binding to these mutants was also inhibited by 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester (CPCCOEt), a structurally unrelated non-competitive mGluR1 antagonist previously shown to interact with residues Thr-815 and Ala-818 in TMVII of hmGluR1. These results indicate that MPEP and CPCCOEt bind to overlapping binding pockets in the TM region of group I mGluRs but interact with different non-conserved residues.
European Journal of Neuroscience | 2003
John F. Cryan; Peter H. Kelly; Hans Neijt; Gilles Sansig; Peter J. Flor; Herman van der Putten
Glutamatergic neurotransmission has been strongly implicated in the pathophysiology of affective disorders, such as major depression and anxiety. Of all glutamate receptors, the role of group III metabotropic glutamate receptors (mGluR4, mGluR6, mGluR7, mGluR8) in such disorders is the least investigated because of the lack of specific pharmacological tools. To this end, we examined the behavioural profiles of mice with a targeted deletion of the gene for mGluR7 (mGluR7−/−) in animal models of depression and anxiety. mGluR7−/− mice were compared with wild‐type (mGluR7+/+) littermates and showed substantially less behavioural immobility in both the forced swim test and the tail suspension test. Both behavioural paradigms are widely used to predict antidepressant‐like activity. Further, mGluR7−/− mice displayed anxiolytic activity in four different behavioural tests, i.e. the light–dark box, the elevated plus maze, the staircase test, and the stress‐induced hyperthermia test, while their cognitive performance was normal in the passive avoidance paradigm. Analysis of locomotor activity in a novel environment demonstrated that mGluR7−/− mice were slightly more active in the initial minutes following placement in the chamber only. Together, these data suggest that mGluR7 may play a pivotal role in mechanisms that regulate behavioural responses to aversive states. Therefore, drugs acting at mGluR7 may provide novel treatments for psychiatric disorders such as depression and anxiety.
Neuropharmacology | 2003
M. Maj; Valeria Bruno; Zorica Dragic; R. Yamamoto; Giuseppe Battaglia; Werner Inderbitzin; Natacha Stoehr; T. Stein; Fabrizio Gasparini; Ivo Vranesic; Rainer Kuhn; Ferdinando Nicoletti; Peter J. Flor
Group-III metabotropic glutamate receptors (mGluR4, -6, -7, and -8) modulate neurotoxicity of excitatory amino acids and beta-amyloid-peptide (betaAP), as well as epileptic convulsions, most likely via presynaptic inhibition of glutamatergic neurotransmission. Due to the lack of subtype-selective ligands for group-III receptors, we previously utilized knock-out mice to identify mGluR4 as the primary receptor mediating neuroprotection of unselective group-III agonists such as L-AP(4) or (+)-PPG, whereas mGluR7 is critical for anticonvulsive effects. In a recent effort to find group-III subtype-selective drugs we identified (+/-)-PHCCC as a positive allosteric modulator for mGluR4. This compound increases agonist potency and markedly enhances maximum efficacy and, at higher concentrations, directly activates mGluR4 with low efficacy. All the activity of (+/-)-PHCCC resides in the (-)-enantiomer, which is inactive at mGluR2, -3, -5a, -6, -7b and -8a, but shows partial antagonist activity at mGluR1b (30% maximum antagonist efficacy). Chimeric receptor studies showed that the binding site of (-)-PHCCC is localized in the transmembrane region.Finally, (-)-PHCCC showed neuroprotection against betaAP- and NMDA-toxicity in mixed cultures of mouse cortical neurons. This neuroprotection was additive to that induced by the highly efficacious mGluR1 antagonist CPCCOEt and was blocked by MSOP, a group-III mGluR antagonist. Our data provide evidence for a novel pharmacological site on mGluR4, which may be used as a target-site for therapeutics.
Neuropharmacology | 2001
K Walker; M Bowes; M Panesar; A Davis; C Gentry; A Kesingland; Fabrizio Gasparini; Will Spooren; Natacha Stoehr; Adriana Pagano; Peter J. Flor; Ivo Vranesic; Kurt Lingenhoehl; Edwin C. Johnson; Mark A. Varney; Laszlo Urban; Rainer Kuhn
The excitatory neurotransmitter, glutamate, is particularly important in the transmission of pain information in the nervous system through the activation of ionotropic and metabotropic glutamate receptors. A potent, subtype-selective antagonist of the metabotropic glutamate-5 (mGlu5) receptor, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), has now been discovered that has effective anti-hyperalgesic effects in models of inflammatory pain. MPEP did not affect rotarod locomotor performance, or normal responses to noxious mechanical or thermal stimulation in naïve rats. However, in models of inflammatory pain, systemic administration of MPEP produced effective reversal of mechanical hyperalgesia without affecting inflammatory oedema. In contrast to the non-steroidal anti-inflammatory drugs, indomethacin and diclofenac, the maximal anti-hyperalgesic effects of orally administered MPEP were observed without acute erosion of the gastric mucosa. In contrast to its effects in models of inflammatory pain, MPEP did not produce significant reversal of mechanical hyperalgesia in a rat model of neuropathic pain.
Neuropharmacology | 2000
Valeria Bruno; I. Ksiazek; Giuseppe Battaglia; S. Lukic; T. Leonhardt; D. Sauer; Fabrizio Gasparini; Rainer Kuhn; Ferdinando Nicoletti; Peter J. Flor
We have used potent and selective non-competitive antagonists of metabotropic glutamate receptor subtype 5 (mGlu5) -- 2-methyl-6-phenylethynylpyridine (MPEP), [6-methyl-2-(phenylazo)-3-pyridinol] (SIB-1757) and [(E)-2-methyl-6-(2-phenylethenyl)pyridine] (SIB-1893) - to examine whether endogenous activation of this particular metabotropic glutamate receptor subtype contributes to neuronal degeneration. In cortical cultures challenged with N-methyl-D-aspartate (NMDA), all three mGlu5 receptor antagonists were neuroprotective. The effect of MPEP was highly specific because the close analogue, 3-methyl-6-phenylethynylpyridine (iso-MPEP), which did not antagonize heterologously expressed mGlu5 receptors, was devoid of activity on NMDA toxicity. Neuroprotection by mGlu5 receptor antagonists was also observed in cortical cultures challenged with a toxic concentration of beta-amyloid peptide. We have also examined the effect of mGlu5 receptor antagonists in in vivo models of excitotoxic degeneration. MPEP and SIB-1893 were neuroprotective against neuronal damage induced by intrastriatal injection of NMDA or quinolinic acid. These results indicate that mGlu5 receptors represent a suitable target for novel neuroprotective agents of potential application in neurodegenerative disorders.
Pharmacological Reviews | 2011
Marcela Julio-Pieper; Peter J. Flor; Timothy G. Dinan; John F. Cryan
Metabotropic glutamate (mGlu) receptors are G-protein-coupled receptors expressed primarily on neurons and glial cells, where they are located in the proximity of the synaptic cleft. In the central nervous system (CNS), mGlu receptors modulate the effects of l-glutamate neurotransmission in addition to that of a variety of other neurotransmitters. However, mGlu receptors also have a widespread distribution outside the CNS that has been somewhat neglected to date. Based on this expression, diverse roles of mGlu receptors have been suggested in a variety of processes in health and disease including controlling hormone production in the adrenal gland and pancreas, regulating mineralization in the developing cartilage, modulating lymphocyte cytokine production, directing the state of differentiation in embryonic stem cells, and modulating gastrointestinal secretory function. Understanding the role of mGlu receptors in the periphery will also provide a better insight into potential side effects of drugs currently being developed for neurological and psychiatric conditions. This review summarizes the new potential roles of mGlu receptors and raises the possibility of novel pharmacological targets for various disorders.
Psychopharmacology | 2007
Agnieszka Pałucha; Kinga Kłak; Piotr Brański; Herman van der Putten; Peter J. Flor; Andrzej Pilc
RationaleBroad evidence indicates that modulation of the glutamatergic system could be an efficient way to achieve antidepressant activity. Metabotropic glutamate receptor (mGlu receptor) ligands seem to be promising agents to treat several central nervous system disorders, including psychiatric ones.ObjectivesThe aim of our study was to investigate potential antidepressant-like activity of the first, selective, and bio-available mGlu7 receptor agonist, AMN082 (N,N′-dibenzyhydryl-ethane-1,2-diamine dihydrochloride), in wild-type (WT) and mGlu7 receptor knock-out (KO) mice.Materials and methodsThe forced swim test (FST) and the tail suspension test (TST) in mice were used to assess antidepressant-like activity of AMN082.ResultsWe found that AMN082, administered IP, induced a dose-dependent decrease in the immobility time of WT animals in the FST and TST, suggesting antidepressant-like potency of an mGlu7 receptor agonist. Moreover, AMN082 did not change the behaviour of mGlu7 receptor KO mice compared to WT littermates in the TST, while imipramine, used as a reference control, significantly reduced their immobility, indicating an mGlu7 receptor-dependent mechanism of the antidepressant-like activity of AMN082. However, at high doses, AMN082 significantly decreased spontaneous locomotor activity of both mGlu7 receptor KO mice and WT control animals, suggesting off-target activity of AMN082 resulting in hypo-locomotion.ConclusionsThese results strongly suggest that activation of the mGlu7 receptor elicits antidepressant-like effects.