Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter J.I. Ellis is active.

Publication


Featured researches published by Peter J.I. Ellis.


PLOS Biology | 2009

The Multicopy Gene Sly Represses the Sex Chromosomes in the Male Mouse Germline after Meiosis

Julie Cocquet; Peter J.I. Ellis; Yasuhiro Yamauchi; Shantha K. Mahadevaiah; Nabeel A. Affara; Monika A. Ward; Paul S. Burgoyne

Small-interfering RNAs have been used to disrupt the function of the more than 100 copies of the Sly gene on the mouse Y chromosome, leading to defective sex chromosome repression during spermatid differentiation and, as a consequence, sperm malformations and near-sterility.


Molecular and Cellular Biology | 2006

Loss of TSLC1 Causes Male Infertility Due to a Defect at the Spermatid Stage of Spermatogenesis

Louise van der Weyden; Mark J. Arends; Oriane E. Chausiaux; Peter J.I. Ellis; Ulrike C. Lange; M. Azim Surani; Nabeel A. Affara; Yoshinori Murakami; David J. Adams; Allan Bradley

ABSTRACT Tumor suppressor of lung cancer 1 (TSLC1), also known as SgIGSF, IGSF4, and SynCAM, is strongly expressed in spermatogenic cells undergoing the early and late phases of spermatogenesis (spermatogonia to zygotene spermatocytes and elongating spermatids to spermiation). Using embryonic stem cell technology to generate a null mutation of Tslc1 in mice, we found that Tslc1 null male mice were infertile. Tslc1 null adult testes showed that spermatogenesis had arrested at the spermatid stage, with degenerating and apoptotic spermatids sloughing off into the lumen. In adult mice, Tslc1 null round spermatids showed evidence of normal differentiation (an acrosomal cap and F-actin polarization indistinguishable from that of wild-type spermatids); however, the surviving spermatozoa were immature, malformed, found at very low levels in the epididymis, and rarely motile. Analysis of the first wave of spermatogenesis in Tslc1 null mice showed a delay in maturation by day 22 and degeneration of round spermatids by day 28. Expression profiling of the testes revealed that Tslc1 null mice showed increases in the expression levels of genes involved in apoptosis, adhesion, and the cytoskeleton. Taken together, these data show that Tslc1 is essential for normal spermatogenesis in mice.


PLOS Genetics | 2012

A Genetic Basis for a Postmeiotic X Versus Y Chromosome Intragenomic Conflict in the Mouse

Julie Cocquet; Peter J.I. Ellis; Shantha K. Mahadevaiah; Nabeel A. Affara; Daniel Vaiman; Paul S. Burgoyne

Intragenomic conflicts arise when a genetic element favours its own transmission to the detriment of others. Conflicts over sex chromosome transmission are expected to have influenced genome structure, gene regulation, and speciation. In the mouse, the existence of an intragenomic conflict between X- and Y-linked multicopy genes has long been suggested but never demonstrated. The Y-encoded multicopy gene Sly has been shown to have a predominant role in the epigenetic repression of post meiotic sex chromatin (PMSC) and, as such, represses X and Y genes, among which are its X-linked homologs Slx and Slxl1. Here, we produced mice that are deficient for both Sly and Slx/Slxl1 and observed that Slx/Slxl1 has an opposite role to that of Sly, in that it stimulates XY gene expression in spermatids. Slx/Slxl1 deficiency rescues the sperm differentiation defects and near sterility caused by Sly deficiency and vice versa. Slx/Slxl1 deficiency also causes a sex ratio distortion towards the production of male offspring that is corrected by Sly deficiency. All in all, our data show that Slx/Slxl1 and Sly have antagonistic effects during sperm differentiation and are involved in a postmeiotic intragenomic conflict that causes segregation distortion and male sterility. This is undoubtedly what drove the massive gene amplification on the mouse X and Y chromosomes. It may also be at the basis of cases of F1 male hybrid sterility where the balance between Slx/Slxl1 and Sly copy number, and therefore expression, is disrupted. To the best of our knowledge, our work is the first demonstration of a competition occurring between X and Y related genes in mammals. It also provides a biological basis for the concept that intragenomic conflict is an important evolutionary force which impacts on gene expression, genome structure, and speciation.


Human Molecular Genetics | 2011

Association of Sly with sex-linked gene amplification during mouse evolution: a side effect of genomic conflict in spermatids?

Peter J.I. Ellis; Joanne Bacon; Nabeel A. Affara

In common with other mammalian sex chromosomes, the mouse sex chromosomes are enriched for genes with male-specific function such as testis genes. However, in mouse there has been an unprecedented expansion of ampliconic sequence containing spermatid-expressed genes. We show via a phylogenetic analysis of gene amplification on the mouse sex chromosomes that multiple families of sex-linked spermatid-expressed genes are highly amplified in Mus musculus subspecies and in two further species from the Palaearctic clade of mouse species. Ampliconic X-linked genes expressed in other cell types showed a different evolutionary trajectory, without the distinctive simultaneous amplification seen in spermatid-expressed genes. The Palaearctic gene amplification occurred concurrently with the appearance of Sly, a Yq-linked regulator of post-meiotic sex chromatin (PMSC) which acts to repress sex chromosome transcription in spermatids. Despite the gene amplification, there was comparatively little effect on transcript abundance, suggesting that the genes in question became amplified in order to overcome Sly-mediated transcriptional repression and maintain steady expression levels in spermatids. Together with the known sex-ratio effects of Yq/Sly deficiency, our results suggest that Sly is involved in a genomic conflict with one or more X-linked sex-ratio distorter genes. The recent evolution of the novel PMSC regulator Sly in mouse lineages has significant implications for the use of mouse-model systems in investigating sex chromosome dynamics in spermatids.


Molecular Biology of the Cell | 2010

Deficiency in the Multicopy Sycp3-Like X-Linked Genes Slx and Slxl1 Causes Major Defects in Spermatid Differentiation

Julie Cocquet; Peter J.I. Ellis; Yasuhiro Yamauchi; Jonathan M. Riel; Thomas P. S. Karacs; Áine Rattigan; Obah A. Ojarikre; Nabeel A. Affara; Monika A. Ward; Paul S. Burgoyne

Slx and Slxl1 are genes present in multiple copies on the mouse X chromosome. Using transgenically-delivered small interfering RNAs to disrupt their function, we show that Slx and Slxl1 are important for normal sperm differentiation and male fertility.


BMC Molecular Biology | 2010

The human RPS4 paralogue on Yq11.223 encodes a structurally conserved ribosomal protein and is preferentially expressed during spermatogenesis.

Alexandra M Lopes; Ricardo Núñez Miguel; Carole A. Sargent; Peter J.I. Ellis; António Amorim; Nabeel A. Affara

BackgroundThe Y chromosome of mammals is particularly prone to accumulate genes related to male fertility. However, the high rate of molecular evolution on this chromosome predicts reduced power to the across-species comparative approach in identifying male-specific genes that are essential for sperm production in humans. We performed a comprehensive analysis of expression of Y-linked transcripts and their X homologues in several human tissues, and in biopsies of infertile patients, in an attempt to identify new testis-specific genes involved in human spermatogenesis.ResultsWe present evidence that one of the primate-specific Y-linked ribosomal protein genes, RPS4Y2, has restricted expression in testis and prostate, in contrast with its X-linked homologue, which is ubiquitously expressed. Moreover, we have determined by highly specific quantitative real time PCR that RPS4Y2 is more highly expressed in testis biopsies containing germ cells. The in silico analysis of the promoter region of RPS4Y2 revealed several differences relative to RPS4Y1, the more widely expressed paralogue from which Y2 has originated through duplication. Finally, through comparative modelling we obtained the three dimensional models of the human S4 proteins, revealing a conserved structure. Interestingly, RPS4Y2 shows different inter-domain contacts and the potential to establish specific interactions.ConclusionsThese results suggest that one of the Y-linked copies of the ribosomal protein S4 is preferentially expressed during spermatogenesis and might be important for germ cell development. Even though RPS4Y2 has accumulated several amino acid changes following its duplication from RPS4Y1, approximately 35 million years ago, the evolution of the Y-encoded RPS4 proteins is structurally constrained. However, the exclusive expression pattern of RPS4Y2 and the novelties acquired at the C-terminus of the protein may indicate some degree of functional specialisation of this protein in spermatogenesis.


Journal of Medical Genetics | 2007

Coordinated transcriptional regulation patterns associated with infertility phenotypes in men.

Peter J.I. Ellis; Robert A. Furlong; Sarah J. Conner; Jackson Kirkman-Brown; Masoud Afnan; Christopher L.R. Barratt; Darren K. Griffin; Nabeel A. Affara

Introduction: Microarray gene-expression profiling is a powerful tool for global analysis of the transcriptional consequences of disease phenotypes. Understanding the genetic correlates of particular pathological states is important for more accurate diagnosis and screening of patients, and thus for suggesting appropriate avenues of treatment. As yet, there has been little research describing gene-expression profiling of infertile and subfertile men, and thus the underlying transcriptional events involved in loss of spermatogenesis remain unclear. Here we present the results of an initial screen of 33 patients with differing spermatogenic phenotypes. Methods: Oligonucleotide array expression profiling was performed on testis biopsies for 33 patients presenting for testicular sperm extraction. Significantly regulated genes were selected using a mixed model analysis of variance. Principle components analysis and hierarchical clustering were used to interpret the resulting dataset with reference to the patient history, clinical findings and histological composition of the biopsies. Results: Striking patterns of coordinated gene expression were found. The most significant contains multiple germ cell-specific genes and corresponds to the degree of successful spermatogenesis in each patient, whereas a second pattern corresponds to inflammatory activity within the testis. Smaller-scale patterns were also observed, relating to unique features of the individual biopsies.


BMC Genomics | 2014

Thrifty metabolic programming in rats is induced by both maternal undernutrition and postnatal leptin treatment, but masked in the presence of both: implications for models of developmental programming

Peter J.I. Ellis; Tiffany J. Morris; Benjamin M. Skinner; Carole A. Sargent; Mark H. Vickers; Peter Gluckman; Stewart Gilmour; Nabeel A. Affara

BackgroundMaternal undernutrition leads to an increased risk of metabolic disorders in offspring including obesity and insulin resistance, thought to be due to a programmed thrifty phenotype which is inappropriate for a subsequent richer nutritional environment. In a rat model, both male and female offspring of undernourished mothers are programmed to become obese, however postnatal leptin treatment gives discordant results between males and females. Leptin treatment is able to rescue the adverse programming effects in the female offspring of undernourished mothers, but not in their male offspring. Additionally, in these rats, postnatal leptin treatment of offspring from normally-nourished mothers programmes their male offspring to develop obesity in later life, while there is no comparable effect in their female offspring.ResultsWe show by microarray analysis of the female liver transcriptome that both maternal undernutrition and postnatal leptin treatment independently induce a similar thrifty transcriptional programme affecting carbohydrate metabolism, amino acid metabolism and oxidative stress genes. Paradoxically, however, the combination of both stimuli restores a more normal transcriptional environment. This demonstrates that “leptin reversal” is a global phenomenon affecting all genes involved in fetal programming by maternal undernourishment and leptin treatment. The thrifty transcriptional programme was associated with pro-inflammatory markers and downregulation of adaptive immune mediators, particularly MHC class I genes, suggesting a deficit in antigen presentation in these offspring.ConclusionsWe propose a revised model of developmental programming reconciling the male and female observations, in which there are two competing programmes which collectively drive liver transcription. The first element is a thrifty metabolic phenotype induced by early life growth restriction independently of leptin levels. The second is a homeostatic set point calibrated in response to postnatal leptin surge, which is able to over-ride the metabolic programme. This “calibration model” for the postnatal leptin surge, if applicable in humans, may have implications for understanding responses to catch-up growth in infants. Additionally, the identification of an antigen presentation deficit associated with metabolic thriftiness may relate to a previously observed correlation between birth season (a proxy for gestational undernutrition) and infectious disease mortality in rural African communities.


Mammalian Genome | 2009

Two novel mouse genes mapped to chromosome Yp are expressed specifically in spermatids

Lydia Ferguson; Peter J.I. Ellis; Nabeel A. Affara

The male-specific region of the Y chromosome is evolutionarily predisposed to accumulate genes important for spermatogenesis. Recent work in this laboratory identified two novel Y-linked transcripts that were upregulated in the testis in response to deletions on the chromosome arm Yq. This article reports the further characterisation of these two transcripts and their comparison to related X and autosomal genes. Both map to chromosome arm Yp, outside the Sxrb deletion interval, both are present in at least two copies on the Y, and both are expressed specifically in spermatids. Given the testicular phenotype of mice with deletions on the Y chromosome, both genes are therefore likely to function in spermatid differentiation. AK006152 is a novel mouse-specific gene with a single potential open reading frame, and it is unusual in that there appears to be no X-linked relative. H2al2y is a novel histone in the H2A superfamily and has multiple X-linked relatives and a single autosomal relative in mouse. The presence of a single X-linked copy in rat suggests that H2al amplification is mouse-specific, with the alternative explanation being an earlier amplification followed by gene loss. A phylogenetic analysis of H2al genes together with other H2A genes indicates that H2al is most closely related to the mammalian-specific H2A.Bbd family of histones. Interestingly, Ka/Ks analysis indicates that the X and Y members of the H2al family may be under positive selection in mouse, while the autosomal copy is under purifying selection and presumably retains the ancestral function.


Human Fertility | 2006

Spermatogenesis and sex chromosome gene content: An evolutionary perspective

Peter J.I. Ellis; Nabeel A. Affara

Mammalian sex chromosomes are highly diverged and heteromorphic: a comparatively large and gene-rich X chromosome contrasting with a small, largely heterochromatic and degenerate Y chromosome. Both gonosomes are however uniquely important in male-specific functions such as spermatogenesis. In this review, we examine the evolutionary pressures that have driven the divergence of the sex chromosomes from their ancestral state, and show how these have shaped the gene content of both chromosomes. Their shared history of gene acquisition and loss, differentiation, degeneration and intragenomic warfare has far-reaching consequences for their functionality in spermatogenesis, and may also have potential clinical implications.

Collaboration


Dive into the Peter J.I. Ellis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monika A. Ward

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Yasuhiro Yamauchi

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Kate L. Loveland

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge