Peter J. Sadowski
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter J. Sadowski.
international conference on bioinformatics | 2014
Davide Chicco; Peter J. Sadowski; Pierre Baldi
The annotation of genomic information is a major challenge in biology and bioinformatics. Existing databases of known gene functions are incomplete and prone to errors, and the bimolecular experiments needed to improve these databases are slow and costly. While computational methods are not a substitute for experimental verification, they can help in two ways: algorithms can aid in the curation of gene annotations by automatically suggesting inaccuracies, and they can predict previously-unidentified gene functions, accelerating the rate of gene function discovery. In this work, we develop an algorithm that achieves both goals using deep autoencoder neural networks. With experiments on gene annotation data from the Gene Ontology project, we show that deep autoencoder networks achieve better performance than other standard machine learning methods, including the popular truncated singular value decomposition.
Physical Review D | 2016
Pierre Baldi; Kevin Thomas Bauer; Clara H. Eng; Peter J. Sadowski; Daniel Whiteson
At the extreme energies of the Large Hadron Collider, massive particles can be produced at such high velocities that their hadronic decays are collimated and the resulting jets overlap. Deducing whether the substructure of an observed jet is due to a low-mass single particle or due to multiple decay objects of a massive particle is an important problem in the analysis of collider data. Traditional approaches have relied on expert features designed to detect energy deposition patterns in the calorimeter, but the complexity of the data make this task an excellent candidate for the application of machine learning tools. The data collected by the detector can be treated as a two-dimensional image, lending itself to the natural application of image classification techniques. In this work, we apply deep neural networks with a mixture of locally connected and fully connected nodes. Our experiments demonstrate that without the aid of expert features, such networks match or modestly outperform the current state-of-the-art approach for discriminating between jets from single hadronic particles and overlapping jets from pairs of collimated hadronic particles, and that such performance gains persist in the presence of pileup interactions.
European Physical Journal C | 2016
Pierre Baldi; K. Cranmer; Taylor Faucett; Peter J. Sadowski; Daniel Whiteson
We investigate a new structure for machine learning classifiers built with neural networks and applied to problems in high-energy physics by expanding the inputs to include not only measured features but also physics parameters. The physics parameters represent a smoothly varying learning task, and the resulting parameterized classifier can smoothly interpolate between them and replace sets of classifiers trained at individual values. This simplifies the training process and gives improved performance at intermediate values, even for complex problems requiring deep learning. Applications include tools parameterized in terms of theoretical model parameters, such as the mass of a particle, which allow for a single network to provide improved discrimination across a range of masses. This concept is simple to implement and allows for optimized interpolatable results.
Physical Review Letters | 2014
Pierre Baldi; Peter J. Sadowski; Daniel Whiteson
The Higgs boson is thought to provide the interaction that imparts mass to the fundamental fermions, but while measurements at the Large Hadron Collider (LHC) are consistent with this hypothesis, current analysis techniques lack the statistical power to cross the traditional 5σ significance barrier without more data. Deep learning techniques have the potential to increase the statistical power of this analysis by automatically learning complex, high-level data representations. In this work, deep neural networks are used to detect the decay of the Higgs boson to a pair of tau leptons. A Bayesian optimization algorithm is used to tune the network architecture and training algorithm hyperparameters, resulting in a deep network of eight nonlinear processing layers that improves upon the performance of shallow classifiers even without the use of features specifically engineered by physicists for this application. The improvement in discovery significance is equivalent to an increase in the accumulated data set of 25%.
Physical Review Letters | 2015
Pierre Baldi; Peter J. Sadowski; Daniel Whiteson
The Higgs boson is thought to provide the interaction that imparts mass to the fundamental fermions, but while measurements at the Large Hadron Collider (LHC) are consistent with this hypothesis, current analysis techniques lack the statistical power to cross the traditional 5σ significance barrier without more data. Deep learning techniques have the potential to increase the statistical power of this analysis by automatically learning complex, high-level data representations. In this work, deep neural networks are used to detect the decay of the Higgs boson to a pair of tau leptons. A Bayesian optimization algorithm is used to tune the network architecture and training algorithm hyperparameters, resulting in a deep network of eight nonlinear processing layers that improves upon the performance of shallow classifiers even without the use of features specifically engineered by physicists for this application. The improvement in discovery significance is equivalent to an increase in the accumulated data set of 25%.
Physical Review D | 2017
Chase Owen Shimmin; Peter J. Sadowski; Pierre Baldi; Edison Weik; Daniel Whiteson; Edward Goul; Andreas Søgaard
We describe a strategy for constructing a neural network jet substructure tagger which powerfully discriminates boosted decay signals while remaining largely uncorrelated with the jet mass. This reduces the impact of systematic uncertainties in background modeling while enhancing signal purity, resulting in improved discovery significance relative to existing taggers. The network is trained using an adversarial strategy, resulting in a tagger that learns to balance classification accuracy with decorrelation. As a benchmark scenario, we consider the case where large-radius jets originating from a boosted resonance decay are discriminated from a background of nonresonant quark and gluon jets. We show that in the presence of systematic uncertainties on the background rate, our adversarially-trained, decorrelated tagger considerably outperforms a conventionally trained neural network, despite having a slightly worse signal-background separation power. We generalize the adversarial training technique to include a parametric dependence on the signal hypothesis, training a single network that provides optimized, interpolatable decorrelated jet tagging across a continuous range of hypothetical resonance masses, after training on discrete choices of the signal mass.
Artificial Intelligence | 2018
Pierre Baldi; Peter J. Sadowski; Zhiqin Lu
Random backpropagation (RBP) is a variant of the backpropagation algorithm for training neural networks, where the transpose of the forward matrices are replaced by fixed random matrices in the calculation of the weight updates. It is remarkable both because of its effectiveness, in spite of using random matrices to communicate error information, and because it completely removes the taxing requirement of maintaining symmetric weights in a physical neural system. To better understand random backpropagation, we first connect it to the notions of local learning and learning channels. Through this connection, we derive several alternatives to RBP, including skipped RBP (SRPB), adaptive RBP (ARBP), sparse RBP, and their combinations (e.g. ASRBP) and analyze their computational complexity. We then study their behavior through simulations using the MNIST and CIFAR-10 bechnmark datasets. These simulations show that most of these variants work robustly, almost as well as backpropagation, and that multiplication by the derivatives of the activation functions is important. As a follow-up, we study also the low-end of the number of bits required to communicate error information over the learning channel. We then provide partial intuitive explanations for some of the remarkable properties of RBP and its variations. Finally, we prove several mathematical results, including the convergence to fixed points of linear chains of arbitrary length, the convergence to fixed points of linear autoencoders with decorrelated data, the long-term existence of solutions for linear systems with a single hidden layer and convergence in special cases, and the convergence to fixed points of non-linear chains, when the derivative of the activation functions is included.
Neural Networks | 2016
Pierre Baldi; Peter J. Sadowski
In a physical neural system, where storage and processing are intimately intertwined, the rules for adjusting the synaptic weights can only depend on variables that are available locally, such as the activity of the pre- and post-synaptic neurons, resulting in local learning rules. A systematic framework for studying the space of local learning rules is obtained by first specifying the nature of the local variables, and then the functional form that ties them together into each learning rule. Such a framework enables also the systematic discovery of new learning rules and exploration of relationships between learning rules and group symmetries. We study polynomial local learning rules stratified by their degree and analyze their behavior and capabilities in both linear and non-linear units and networks. Stacking local learning rules in deep feedforward networks leads to deep local learning. While deep local learning can learn interesting representations, it cannot learn complex input-output functions, even when targets are available for the top layer. Learning complex input-output functions requires local deep learning where target information is communicated to the deep layers through a backward learning channel. The nature of the communicated information about the targets and the structure of the learning channel partition the space of learning algorithms. For any learning algorithm, the capacity of the learning channel can be defined as the number of bits provided about the error gradient per weight, divided by the number of required operations per weight. We estimate the capacity associated with several learning algorithms and show that backpropagation outperforms them by simultaneously maximizing the information rate and minimizing the computational cost. This result is also shown to be true for recurrent networks, by unfolding them in time. The theory clarifies the concept of Hebbian learning, establishes the power and limitations of local learning rules, introduces the learning channel which enables a formal analysis of the optimality of backpropagation, and explains the sparsity of the space of learning rules discovered so far.
Bioinformatics | 2015
Michael Biehl; Peter J. Sadowski; Gyan Bhanot; Erhan Bilal; Adel Dayarian; Pablo Meyer; Raquel Norel; Kahn Rhrissorrakrai; Michael D. Zeller; Sahand Hormoz
Motivation: Animal models are widely used in biomedical research for reasons ranging from practical to ethical. An important issue is whether rodent models are predictive of human biology. This has been addressed recently in the framework of a series of challenges designed by the systems biology verification for Industrial Methodology for Process Verification in Research (sbv IMPROVER) initiative. In particular, one of the sub-challenges was devoted to the prediction of protein phosphorylation responses in human bronchial epithelial cells, exposed to a number of different chemical stimuli, given the responses in rat bronchial epithelial cells. Participating teams were asked to make inter-species predictions on the basis of available training examples, comprising transcriptomics and phosphoproteomics data. Results: Here, the two best performing teams present their data-driven approaches and computational methods. In addition, post hoc analyses of the datasets and challenge results were performed by the participants and challenge organizers. The challenge outcome indicates that successful prediction of protein phosphorylation status in human based on rat phosphorylation levels is feasible. However, within the limitations of the computational tools used, the inclusion of gene expression data does not improve the prediction quality. The post hoc analysis of time-specific measurements sheds light on the signaling pathways in both species. Availability and implementation: A detailed description of the dataset, challenge design and outcome is available at www.sbvimprover.com. The code used by team IGB is provided under http://github.com/uci-igb/improver2013. Implementations of the algorithms applied by team AMG are available at http://bhanot.biomaps.rutgers.edu/wiki/AMG-sc2-code.zip. Contact: [email protected]
international conference on machine learning and applications | 2016
Evan Racah; Seyoon Ko; Peter J. Sadowski; Wahid Bhimji; Craig Tull; S. Oh; Pierre Baldi; Prabhat
Experiments in particle physics produce enormous quantities of data that must be analyzed and interpreted by teams of physicists. This analysis is often exploratory, where scientists are unable to enumerate the possible types of signal prior to performing the experiment. Thus, tools for summarizing, clustering, visualizing and classifying high-dimensional data are essential. In this work, we show that meaningful physical content can be revealed by transforming the raw data into a learned high-level representation using deep neural networks, with measurements taken at the Daya Bay Neutrino Experiment as a case study. We further show how convolutional deep neural networks can provide an effective classification filter with greater than 97% accuracy across different classes of physics events, significantly better than other machine learning approaches.