Peter J. Unrau
Simon Fraser University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter J. Unrau.
Genome Research | 2008
Ryan D. Morin; Gozde Aksay; Elena V. Dolgosheina; H. Alexander Ebhardt; Vincent Magrini; Elaine R. Mardis; S. Cenk Sahinalp; Peter J. Unrau
The diversity of microRNAs and small-interfering RNAs has been extensively explored within angiosperms by focusing on a few key organisms such as Oryza sativa and Arabidopsis thaliana. A deeper division of the plants is defined by the radiation of the angiosperms and gymnosperms, with the latter comprising the commercially important conifers. The conifers are expected to provide important information regarding the evolution of highly conserved small regulatory RNAs. Deep sequencing provides the means to characterize and quantitatively profile small RNAs in understudied organisms such as these. Pyrosequencing of small RNAs from O. sativa revealed, as expected, approximately 21- and approximately 24-nt RNAs. The former contained known microRNAs, and the latter largely comprised intergenic-derived sequences likely representing heterochromatin siRNAs. In contrast, sequences from Pinus contorta were dominated by 21-nt small RNAs. Using a novel sequence-based clustering algorithm, we identified sequences belonging to 18 highly conserved microRNA families in P. contorta as well as numerous clusters of conserved small RNAs of unknown function. Using multiple methods, including expressed sequence folding and machine learning algorithms, we found a further 53 candidate novel microRNA families, 51 appearing specific to the P. contorta library. In addition, alignment of small RNA sequences to the O. sativa genome revealed six perfectly conserved classes of small RNA that included chloroplast transcripts and specific types of genomic repeats. The conservation of microRNAs and other small RNAs between the conifers and the angiosperms indicates that important RNA silencing processes were highly developed in the earliest spermatophytes. Genomic mapping of all sequences to the O. sativa genome can be viewed at http://microrna.bcgsc.ca/cgi-bin/gbrowse/rice_build_3/.
Nature | 1998
Peter J. Unrau; David P. Bartel
The ‘RNA world’ hypothesis proposes that early life developed by making use of RNA molecules, rather than proteins, to catalyse the synthesis of important biological molecules. It is thought, however, that the nucleotides constituting RNA were scarce on early Earth. RNA-based life must therefore have acquired the ability to synthesize RNA nucleotides from simpler and more readily available precursors, such as sugars and bases. Plausible prebiotic synthesis routes have been proposed for sugars, sugar phosphates and the four RNA bases, but the coupling of these molecules into nucleotides, specifically pyrimidine nucleotides, poses a challenge to the RNA world hypothesis. Here we report the application of in vitro selection to isolate RNA molecules that catalyse the synthesis of a pyrimidine nucleotide at their 3′ terminus. The finding that RNA can catalyse this type of reaction, which is modelled after pyrimidine synthesis in contemporary metabolism, supports the idea of an RNA world that included nucleotide synthesis and other metabolic pathways mediated by ribozymes.
ACS Chemical Biology | 2014
Elena V. Dolgosheina; Sunny Jeng; Shanker Shyam S. Panchapakesan; Razvan Cojocaru; Patrick S. K. Chen; Peter D. Wilson; Nancy Hawkins; Paul A. Wiggins; Peter J. Unrau
Because RNA lacks strong intrinsic fluorescence, it has proven challenging to track RNA molecules in real time. To address this problem and to allow the purification of fluorescently tagged RNA complexes, we have selected a high affinity RNA aptamer called RNA Mango. This aptamer binds a series of thiazole orange (fluorophore) derivatives with nanomolar affinity, while increasing fluorophore fluorescence by up to 1,100-fold. Visualization of RNA Mango by single-molecule fluorescence microscopy, together with injection and imaging of RNA Mango/fluorophore complex in C. elegans gonads demonstrates the potential for live-cell RNA imaging with this system. By inserting RNA Mango into a stem loop of the bacterial 6S RNA and biotinylating the fluorophore, we demonstrate that the aptamer can be used to simultaneously fluorescently label and purify biologically important RNAs. The high affinity and fluorescent properties of RNA Mango are therefore expected to simplify the study of RNA complexes.
RNA | 2008
Elena V. Dolgosheina; Ryan D. Morin; Gozde Aksay; S. Cenk Sahinalp; Vincent Magrini; Elaine R. Mardis; Jim Mattsson; Peter J. Unrau
Plants produce small RNAs to negatively regulate genes, viral nucleic acids, and repetitive elements at either the transcriptional or post-transcriptional level in a process that is referred to as RNA silencing. While RNA silencing has been extensively studied across the different phyla of the animal kingdom (e.g., mouse, fly, worm), similar studies in the plant kingdom have focused primarily on angiosperms, thus limiting evolutionary studies of RNA silencing in plants. Here we report on an unexpected phylogenetic difference in the size distribution of small RNAs among the vascular plants. By extracting total RNA from freshly growing shoot tissue, we conducted a survey of small RNAs in 24 vascular plant species. We find that conifers, which radiated from the other seed-bearing plants approximately 260 million years ago, fail to produce significant amounts of 24-nucleotide (nt) RNAs that are known to guide DNA methylation and heterochromatin formation in angiosperms. Instead, they synthesize a diverse population of small RNAs that are exactly 21-nt long. This finding was confirmed by high-throughput sequencing of the small RNA sequences from a conifer, Pinus contorta. A conifer EST search revealed the presence of a novel Dicer-like (DCL) family, which may be responsible for the observed change in small RNA expression. No evidence for DCL3, an enzyme that matures 24-nt RNAs in angiosperms, was found. We hypothesize that the diverse class of 21-nt RNAs found in conifers may help to maintain organization of their unusually large genomes.
Chemistry & Biology | 1997
Pardis C. Sabeti; Peter J. Unrau; David P. Bartel
BACKGROUND In the past few years numerous binding and catalytic motifs have been isolated from pools of random nucleic acid sequences. To extend the utility of this approach it is important to learn how to design random-sequence pools that provide maximal access to rare activities. In an effort to better define the relative merits of longer and shorter pools (i.e. pools with longer or shorter random-sequence segments), we have examined the inhibitory effect of excess arbitrary sequence on ribozyme activity and have evaluated whether this inhibition overshadows the calculated advantage of longer pools. RESULTS The calculated advantage of longer sequences was highly dependent on the size and complexity of the desired motif. Small, simple motifs were not much more abundant in longer molecules. In contrast, larger motifs, particularly the most complex (highly modular) motifs, were much more likely to be present in longer molecules. The experimentally determined inhibition of activity by excess sequence was moderate, with bulk effects among four libraries ranging from no effect to 18-fold inhibition. The median effect among 60 clones was fivefold inhibition. CONCLUSIONS For accessing simple motifs (e.g. motifs at least as small and simple as the hammerhead ribozyme motif), longer pools have little if any advantage. For more complex motifs, the inhibitory effect of excess sequence does not approach the calculated advantage of pools of longer molecules. Thus, when seeking to access rare activities, the length of typical random-sequence pools (< or = 70 random positions) is shorter than optimal. As this conclusion holds over a range of incubation conditions, it may also be relevant when considering the emergence of new functional motifs during early evolution.
BMC Genomics | 2015
Ulrike Lambertz; Mariana Oviedo Ovando; Elton José Rosas de Vasconcelos; Peter J. Unrau; Peter J. Myler; Neil E. Reiner
BackgroundLeishmania use exosomes to communicate with their mammalian hosts and these secreted vesicles appear to contribute to pathogenesis by delivering protein virulence factors to macrophages. In other eukaryotes, exosomes were found to carry RNA cargo, such as mRNAs and small non-coding RNAs, capable of altering recipient cell phenotype. Whether leishmania exosomes also contain RNAs which they are able to deliver to bystander cells is not known. Here, we show that leishmania exosomes indeed contain RNAs and compare and contrast the RNA content of exosomes released by Leishmania donovani and Leishmania braziliensis.ResultsWe purified RNA from exosomes collected from axenic amastigote culture supernatant and found that when compared with total leishmania RNA, exosomes mainly contained short RNA sequences. Exosomes with intact membranes were capable of protecting their RNA cargo from degradation by RNase. Moreover, exosome RNA cargo was delivered to host cell cytoplasm in vitro. Sequencing of exosomal RNA indicated that the majority of cargo sequences were derived from non-coding RNA species such as rRNA and tRNA. In depth analysis revealed the presence of tRNA-derived small RNAs, a novel RNA type with suspected regulatory functions. Northern blotting confirmed the specific and selective enrichment of tRNA-derived small RNAs in exosomes. We also identified a number of novel transcripts, which appeared to be specifically enriched in exosomes compared to total cell RNA. In addition, we observed the presence of sequences mapping to siRNA-coding regions in L. braziliensis , but not in L. donovani exosomes.ConclusionsThese results show that leishmania exosomes are selectively and specifically enriched in small RNAs derived almost exclusively from non-coding RNAs. These exosomes are competent to deliver their cargo of novel, potential small regulatory RNAs to macrophages where they may influence parasite-host cell interactions. The remarkably high degree of congruence in exosomal RNA content between L. donovani and L. braziliensis, argues for the presence of a conserved mechanism for exosomal RNA packaging in leishmania. These findings open up a new avenue of research on non-canonical, small RNA pathways in this trypanosomatid, which may elucidate pathogenesis and identify novel therapeutic approaches.
Physics Letters B | 1994
Xiangdong Ji; Peter J. Unrau
We study the
Cold Spring Harbor Perspectives in Biology | 2010
Leslie K.L. Cheng; Peter J. Unrau
Q^2
Physical Review D | 1995
Xiangdong Ji; Peter J. Unrau
variation of the first moment of the nucleons spin-dependent structure function
Proceedings of the National Academy of Sciences of the United States of America | 2003
Peter J. Unrau; David P. Bartel
G_1