Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter J. van Bladeren is active.

Publication


Featured researches published by Peter J. van Bladeren.


Molecular Systems Biology | 2007

A top‐down systems biology view of microbiome‐mammalian metabolic interactions in a mouse model

François-Pierre Martin; Marc-Emmanuel Dumas; Yulan Wang; Cristina Legido-Quigley; Ivan K. S. Yap; Huiru Tang; Severine Zirah; Gerard M. Murphy; Olivier Cloarec; John C. Lindon; Norbert Sprenger; Laurent B. Fay; Sunil Kochhar; Peter J. van Bladeren; Elaine Holmes; Jeremy K. Nicholson

Symbiotic gut microorganisms (microbiome) interact closely with the mammalian hosts metabolism and are important determinants of human health. Here, we decipher the complex metabolic effects of microbial manipulation, by comparing germfree mice colonized by a human baby flora (HBF) or a normal flora to conventional mice. We perform parallel microbiological profiling, metabolic profiling by 1H nuclear magnetic resonance of liver, plasma, urine and ileal flushes, and targeted profiling of bile acids by ultra performance liquid chromatography–mass spectrometry and short‐chain fatty acids in cecum by GC‐FID. Top‐down multivariate analysis of metabolic profiles reveals a significant association of specific metabotypes with the resident microbiome. We derive a transgenomic graph model showing that HBF flora has a remarkably simple microbiome/metabolome correlation network, impacting directly on the hosts ability to metabolize lipids: HBF mice present higher ileal concentrations of tauro‐conjugated bile acids, reduced plasma levels of lipoproteins but higher hepatic triglyceride content associated with depletion of glutathione. These data indicate that the microbiome modulates absorption, storage and the energy harvest from the diet at the systems level.


Molecular Systems Biology | 2008

Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model

François-Pierre Martin; Yulan Wang; Norbert Sprenger; Ivan K. S. Yap; Torbjörn Lundstedt; Per Lek; Serge Rezzi; Ziad Ramadan; Peter J. van Bladeren; Laurent B. Fay; Sunil Kochhar; John C. Lindon; Elaine Holmes; Jeremy K. Nicholson

The transgenomic metabolic effects of exposure to either Lactobacillus paracasei or Lactobacillus rhamnosus probiotics have been measured and mapped in humanized extended genome mice (germ‐free mice colonized with human baby flora). Statistical analysis of the compartmental fluctuations in diverse metabolic compartments, including biofluids, tissue and cecal short‐chain fatty acids (SCFAs) in relation to microbial population modulation generated a novel top‐down systems biology view of the host response to probiotic intervention. Probiotic exposure exerted microbiome modification and resulted in altered hepatic lipid metabolism coupled with lowered plasma lipoprotein levels and apparent stimulated glycolysis. Probiotic treatments also altered a diverse range of pathways outcomes, including amino‐acid metabolism, methylamines and SCFAs. The novel application of hierarchical‐principal component analysis allowed visualization of multicompartmental transgenomic metabolic interactions that could also be resolved at the compartment and pathway level. These integrated system investigations demonstrate the potential of metabolic profiling as a top‐down systems biology driver for investigating the mechanistic basis of probiotic action and the therapeutic surveillance of the gut microbial activity related to dietary supplementation of probiotics.


Chemico-Biological Interactions | 2000

Glutathione conjugation as a bioactivation reaction

Peter J. van Bladeren

Abstract In general, glutathione conjugation is regarded as a detoxication reaction. However, depending on the properties of the substrate, bioactivation is also possible. Four types of activation reaction have been recognized: direct-acting compounds, conjugates that are activated through cysteine conjugate beta-lyase, conjugates that are activated through redox cycling and lastly conjugates that release the original reactive parent compound. The glutathione S-transferases have three connections with the formation of biactivated conjugates: they catalyze their formation in a number of cases, they are the earliest available target for covalent binding by these conjugates and lastly, the parent alkylating agents are regularly involved in the induction of the enzymes. Individual susceptibility for each of these agents is determined by individual transferase subunit composition and methods are becoming available to assess this susceptibility.


British Journal of Nutrition | 2005

The case for strategic international alliances to harness nutritional genomics for public and personal health

Jim Kaput; Jose M. Ordovas; Lynnette R. Ferguson; Ben van Ommen; Raymond L. Rodriguez; Lindsay H. Allen; Bruce N. Ames; Kevin Dawson; Bruce German; Ronald M. Krauss; Wasyl Malyj; Michael C. Archer; Stephen Barnes; Amelia Bartholomew; Ruth Birk; Peter J. van Bladeren; Kent J. Bradford; Kenneth H. Brown; Rosane Caetano; David Castle; Ruth Chadwick; Stephen L. Clarke; Karine Clément; Craig A. Cooney; Dolores Corella; Ivana Beatrice Manica da Cruz; Hannelore Daniel; Troy Duster; Sven O. E. Ebbesson; Ruan Elliott

Nutrigenomics is the study of how constituents of the diet interact with genes, and their products, to alter phenotype and, conversely, how genes and their products metabolise these constituents into nutrients, antinutrients, and bioactive compounds. Results from molecular and genetic epidemiological studies indicate that dietary unbalance can alter gene-nutrient interactions in ways that increase the risk of developing chronic disease. The interplay of human genetic variation and environmental factors will make identifying causative genes and nutrients a formidable, but not intractable, challenge. We provide specific recommendations for how to best meet this challenge and discuss the need for new methodologies and the use of comprehensive analyses of nutrient-genotype interactions involving large and diverse populations. The objective of the present paper is to stimulate discourse and collaboration among nutrigenomic researchers and stakeholders, a process that will lead to an increase in global health and wellness by reducing health disparities in developed and developing countries.


Biochemical Pharmacology | 1990

Inhibition of rat and human glutathione S-transferase isoenzymes by ethacrynic acid and its glutathione conjugate

J.H.T.M. Ploemen; Ben van Ommen; Peter J. van Bladeren

Ethacrynic acid, a potent inhibitor of glutathione S-transferases (GST), has been shown to enhance the cytotoxicity of chlorambucil in drug resistant cell lines, but a definite mechanism has not been established. Both covalent binding to GST and reversible inhibition of GST have been reported. In the present study no irreversible inhibition was observed: for all rat GST tested, inactivation was complete within 15 sec at 0 degree, and dialysis of GST after incubation with ethacrynic acid gave complete recovery of enzyme activity for all isoenzymes tested. Moreover, the inhibition was competitive towards 1-chloro-2,4-dinitrobenzene and non-competitive towards glutathione for rat isoenzyme 1-1. Strong inhibition of both human and rat GST of the alpha-, mu- and pi-classes was obtained with ethacrynic acid, while conjugation of ethacrynic acid with glutathione did not abolish its inhibiting properties. For the alpha-, mu- and pi-class I50 values (microM) were 4.6-6.0, 0.3-1.9 and 3.3-4.8, respectively for ethacrynic acid, and 0.8-2.8, less than 0.1-1.2 and 11.0, respectively for its glutathione conjugate. Of all isoenzymes tested the human isoenzyme mu is most sensitive to the action of both ethacrynic acid and its glutathione conjugate.


Biochemical Pharmacology | 2003

Toxicogenomics of bromobenzene hepatotoxicity: a combined transcriptomics and proteomics approach

Wilbert H. M. Heijne; Rob Stierum; Monique Slijper; Peter J. van Bladeren; Ben van Ommen

Toxicogenomics is a novel approach integrating the expression analysis of thousands of genes (transcriptomics) or proteins (proteomics) with classical methods in toxicology. Effects at the molecular level are related to pathophysiological changes of the organisms, enabling detailed comparison of mechanisms and early detection and prediction of toxicity. This report addresses the value of the combined use of transcriptomics and proteomics technologies in toxicology. Acute hepatotoxicity was induced in rats by bromobenzene administration resulting in depleted glutathione levels and reduced average body weights, 24hr after dosage. These physiological symptoms coincided with many changes of hepatic mRNA and protein content. Gene induction confirmed involvement of glutathione-S-transferase isozymes and epoxide hydrolase in bromobenzene metabolism and identified many genes possibly relevant in bromobenzene toxicity. Observed glutathione depletion coincided with induction of the key enzyme in glutathione biosynthesis, gamma-glutamylcysteine synthetase. Oxidative stress was apparent from strong upregulation of heme oxygenase, peroxiredoxin 1 and other genes. Bromobenzene-induced protein degradation was suggested from two-dimensional gel electrophoresis, upregulated mRNA levels for proteasome subunits and lysosomal cathepsin L, whereas also genes were upregulated with a role in protein synthesis. Both protein and gene expression profiles from treated rats were clearly distinct from controls as shown by principal component analysis, and several proteins found to significantly change upon bromobenzene treatment were identified by mass spectrometry. A modest overlap in results from proteomics and transcriptomics was found. This work indicates that transcriptomics and proteomics technologies are complementary to each other and provide new possibilities in molecular toxicology.


FEBS Letters | 1997

Transport of glutathione prostaglandin A conjugates by the multidrug resistance protein 1

Raymond Evers; N.H.P. Cnubben; Jan Wijnholds; Liesbeth van Deemter; Peter J. van Bladeren; Piet Borst

The human multidrug resistance protein MRP1 mediates transport of organic substrates conjugated to glutathione, glucuronide, or sulfate. The naturally occurring prostaglandins A1 and A2 can form two diastereomeric glutathione S‐conjugates, and it has been speculated that these might be substrates for MRP1. Here we present evidence that polarized MDCKII cells expressing MRP1 cDNA transport PGA1‐GS to the basolateral side of a cell monolayer, in accordance with the lateral localization of human MRP1 in these cells. Furthermore, we show that vesicles made from yeast cells expressing MRP1 cDNA and from mouse erythrocytes (known to contain mrp1) actively accumulate both diastereomers of PGA2‐GS with a similar efficiency. Recently, we generated mice with a homozygous mutant mrp1 allele. Uptake of PGA2‐GS in vesicles made from erythrocytes of these mice was 3.2 times lower than in wild‐type vesicles, but was still significantly above background. This residual transport activity was partly inhibited by methotrexate and cAMP, whereas mrp1‐mediated activity was unaffected by these compounds. We conclude that mouse erythrocytes contain at least two transport systems for PGA2‐GS. One of these is mrp1; the other one has not been identified yet, but can be inhibited by methotrexate and cAMP.


Chemico-Biological Interactions | 1997

Interactions of alpha, beta-unsaturated aldehydes and ketones with human glutathione S-transferase P1-1.

Marlou L.P.S van Iersel; Jan-Peter H.T.M Ploemen; Mario Lo Bello; Giorgio Federici; Peter J. van Bladeren

In the present study the irreversible inhibition of human glutathione S-transferase P1-1 (GSTP1-1) by alpha, beta-unsaturated aldehydes and ketones was studied. When GSTP1-1 was incubated with a 50-fold molar excess of the aldehydes acrolein (ACR) and 4-hydroxy-2-nonenal (HNE) and the ketones curcumin (CUR) and ethacrynic acid (EA) at 22 degrees C, all of them inactivated GSTP1-1. The remaining activity after 4 h of incubation in all cases was lower than 10%. The aldehydes crotonaldehyde (CRA), cinnamaldehyde (CA) and trans-2-hexenal were found to inhibit GSTP1-1 only at a 5000-fold molar excess and even then, for example, for CA a higher remaining activity of 17% was observed. The same inhibition experiments were conducted with 3 mutants of GSTP1-1: the C47S and C101S mutants and the double mutant C47S/C101S. Remaining activity for C47S varied between +/- 40% for CRA, CA, CUR and HEX and +/- 80% for ACR, EA and HNE. For C101S it varied between 0 and 9% and for the double mutant C47S/C101S, activity after 4 h of incubation was variable. Again it varied between +/- 40% for CRA, CA, CUR and HEX and +/- 80% for ACR, EA and HNE. EA is known to react almost exclusively with cysteine 47. When [14C]EA was incubated with the GSTP1-1, modified by the alpha, beta-unsaturated carbonyl compounds, no [14C]EA was incorporated in the enzyme, indicating that in all cases this cysteine residue was one of the major targets. Since Michael addition with these reagents is known to be reversible, the results of incubation of the inactivated enzymes with an excess of glutathione (GSH) were determined. For all compounds, a restoration of the catalytic activity was observed. The results indicate that alpha, beta-unsaturated carbonyl derivatives inhibit GSTP1-1 irreversibly mainly by binding to cysteine residues of GSTP1-1, especially Cys-47, This means that some of these compounds (e.g. CUR) might modify GST activity in vivo when GSH concentrations are low by covalent binding to the enzyme.


Chemico-Biological Interactions | 2003

Inhibition of human glutathione S-transferase P1-1 by the flavonoid quercetin.

Jelmer J. van Zanden; Omar Ben Hamman; Marlou L.P.S van Iersel; N.H.P. Cnubben; Mario Lo Bello; Jacques Vervoort; Peter J. van Bladeren; Ivonne M. C. M. Rietjens

In the present study, the inhibition of human glutathione S-transferase P1-1 (GSTP1-1) by the flavonoid quercetin has been investigated. The results show a time- and concentration-dependent inhibition of GSTP1-1 by quercetin. GSTP1-1 activity is completely inhibited upon 1 h incubation with 100 microM quercetin or 2 h incubation with 25 microM quercetin, whereas 1 and 10 microM quercetin inhibit GSTP1-1 activity to a significant extent reaching a maximum of 25 and 42% inhibition respectively after 2 h. Co-incubation with tyrosinase greatly enhances the rate of inactivation, whereas co-incubation with ascorbic acid or glutathione prevents this inhibition. Addition of glutathione upon complete inactivation of GSTP1-1 partially restores the activity. Inhibition studies with the GSTP1-1 mutants C47S, C101S and the double mutant C47S/C101S showed that cysteine 47 is the key residue in the interaction between quercetin and GSTP1-1. HPLC and LC-MS analysis of trypsin digested GSTP1-1 inhibited by quercetin did not show formation of a covalent bond between Cys 47 residue of the peptide fragment 45-54 and quercetin. It was demonstrated that the inability to detect the covalent quercetin-peptide adduct using LC-MS is due to the reversible nature of the adduct-formation in combination with rapid and preferential dimerization of the peptide fragment once liberated from the protein. Nevertheless, the results of the present study indicate that quinone-type oxidation products of quercetin likely act as specific active site inhibitors of GSTP1-1 by binding to cysteine 47.


FEBS Letters | 2002

Identification of o‐quinone/quinone methide metabolites of quercetin in a cellular in vitro system

Hanem M. Awad; Marelle G. Boersma; Hester van der Woude; Jelmer J. van Zanden; Peter J. van Bladeren; Jacques Vervoort; Ivonne M. C. M. Rietjens

Formation of quercetin quinone/quinone methide metabolites, reflected by formation of the glutathionyl quercetin adducts as authentic metabolites, was investigated in an in vitro cell model (B16F‐10 melanoma cells). Results of the present study clearly indicate the formation of glutathionyl quercetin adducts in a tyrosinase‐containing melanoma cell line, expected to be representative also for peroxidase‐containing mammalian cells and tissues. The data obtained also support that the adducts are formed intracellular and subsequently excreted into the incubation medium and reveal for the first time evidence for the pro‐oxidative metabolism of quercetin in a cellular in vitro model.

Collaboration


Dive into the Peter J. van Bladeren's collaboration.

Top Co-Authors

Avatar

Ivonne M. C. M. Rietjens

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ans Punt

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Marelle G. Boersma

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

N.H.P. Cnubben

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Alicia Paini

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jacques Vervoort

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jelmer J. van Zanden

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

John P. Groten

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge