Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter J. Vikesland is active.

Publication


Featured researches published by Peter J. Vikesland.


Environmental Science & Technology | 2010

Surface-enhanced Raman spectroscopy (SERS) for environmental analyses

Rebecca A. Halvorson; Peter J. Vikesland

The advent of lasers created a revolution in spectroscopic techniques starting in the 1970s. Raman analysis is a fine example, as intense laser light is required to generate detectable signals. Raman has exciting prospects for environmental applications becasuse water does not prove a significant background against chemical analysis, unlike infrared or some visible regimes. The refinement of surface enhanced Raman spectroscopy (SERS) has further pushed the utility of this technique into myriad systems. In this Feature, Halvorson and Vikesland overview the theory and methods, and illustrate environmental applications from contaminant to pathogen detection.


Environmental Science & Technology | 2010

Fractionating Nanosilver: Importance for Determining Toxicity to Aquatic Test Organisms

Alan J. Kennedy; Matthew S. Hull; Anthony J. Bednar; Jennifer D. Goss; Jonas C. Gunter; Jennifer L. Bouldin; Peter J. Vikesland; Jeffery A. Steevens

This investigation applied novel techniques for characterizing and fractionating nanosilver particles and aggregates and relating these measurements to toxicological endpoints. The acute toxicity of eight nanosilver suspensions of varying primary particle sizes (10-80 nm) and coatings (citrate, polyvinylpyrrolidone, EDTA, proprietary) was assessed using three aquatic test organisms (Daphnia magna, Pimephales promelas, Pseudokirchneriella subcapitata). When 48-h lethal median concentrations (LC50) were expressed as total silver, both D. magna and P. promelas were significantly more sensitive to ionic silver (Ag(+)) as AgNO(3) (mean LC50 = 1.2 and 6.3 μg/L, respectively) relative to a wide range in LC50 values determined for the nanosilver suspensions (2 -126 μg/L). However, when LC50 values for nanosilver suspensions were expressed as fractionated nanosilver (Ag(+) and/or <4 nm particles), determined by ultracentrifugation of particles and confirmed field-flow-fractograms, the LC50 values (0.3-5.6 μg/L) were comparable to the values obtained for ionic Ag(+) as AgNO(3). These results suggest that dissolved Ag(+) plays a critical role in acute toxicity and underscores the importance of characterizing dissolved fractions in nanometal suspensions.


Environmental Science & Technology | 2010

Nanomaterial Enabled Biosensors for Pathogen Monitoring - A Review

Peter J. Vikesland; Krista Wigginton

One promising, but currently underexplored, area for the future of drinking water pathogen monitoring stems from the development of nanomaterial-enabled detection strategies. The nanoscience literature contains numerous reports of nanoenabled biosensors; however, to date only a small percentage have focused on the detection of whole cells, in general, and waterborne pathogens, in particular. There are significant opportunities for the use of nanoenabled biosensors for environmental monitoring, and this review is intended to both illustrate the state of this field and to spur additional research in this area.


Environmental Science & Technology | 2012

Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy.

Ronald D. Kent; Peter J. Vikesland

Incorporation of silver nanoparticles (AgNPs) into an increasing number of consumer products has led to concern over the potential ecological impacts of their unintended release to the environment. Dissolution is an important environmental transformation that affects the form and concentration of AgNPs in natural waters; however, studies on AgNP dissolution kinetics are complicated by nanoparticle aggregation. Herein, nanosphere lithography (NSL) was used to fabricate uniform arrays of AgNPs immobilized on glass substrates. Nanoparticle immobilization enabled controlled evaluation of AgNP dissolution in an air-saturated phosphate buffer (pH 7.0, 25 °C) under variable NaCl concentrations in the absence of aggregation. Atomic force microscopy (AFM) was used to monitor changes in particle morphology and dissolution. Over the first day of exposure to ≥10 mM NaCl, the in-plane AgNP shape changed from triangular to circular, the sidewalls steepened, the in-plane radius decreased by 5-11 nm, and the height increased by 6-12 nm. Subsequently, particle height and in-plane radius decreased at a constant rate over a 2-week period. Dissolution rates varied linearly from 0.4 to 2.2 nm/d over the 10-550 mM NaCl concentration range tested. NaCl-catalyzed dissolution of AgNPs may play an important role in AgNP fate in saline waters and biological media. This study demonstrates the utility of NSL and AFM for the direct investigation of unaggregated AgNP dissolution.


Environmental Science & Technology | 2010

Dioxin Photoproducts of Triclosan and Its Chlorinated Derivatives in Sediment Cores

Jeffrey M. Buth; Peter O. Steen; Charles Sueper; Dylan J. Blumentritt; Peter J. Vikesland; William A. Arnold; Kristopher McNeill

Triclosan, a widely used antimicrobial, is known to undergo phototransformation in aqueous solution to form 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD). Two sediment cores from a wastewater-impacted depositional zone of the Mississippi River were analyzed for triclosan by ultra performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-MS-Q(3)) and for a suite of polychlorinated dioxins and furans by high resolution gas chromatography-mass spectrometry (HRGC-MS) to provide evidence of this photoreaction in the environment. 2,8-DCDD was detected at levels that trended with the historical use of triclosan since its introduction in the 1960s. Three other dioxin congeners, 2,3,7-TCDD, 1,2,8-TriCDD, and 1,2,3,8-TCDD, which are known photoproducts of chlorinated derivatives of triclosan, were also detected with similar trend profiles. These four congeners comprised the majority of di- through tetra-chlorinated dioxins. The trend profile of these specific dioxin congeners did not correlate with the trend profile of the higher-chlorinated dioxin homologues or any chlorinated furan homologues, suggesting a unique source. These results are fully consistent with the phototransformation of triclosan and its chlorinated derivatives that form during wastewater chlorine disinfection as the source of 2,8-DCDD, 2,3,7-TriCDD, 1,2,8-TriCDD, and 1,2,3,8-TCDD in this aquatic environment. As the levels of triclosan-derived dioxins increased over time and the total level of chlorinated dioxins decreased, the contribution of triclosan-derived dioxins to the total dioxin pool increased to as high as 31% by mass in recent years, indicating that their contribution to total dioxin toxicity may need consideration.


Langmuir | 2010

Effects of Oxidation on the Magnetization of Nanoparticulate Magnetite

Robert Rebodos; Peter J. Vikesland

Synthetic nanomagnetite has been suggested as a potential reactant for the in situ treatment of contaminated groundwater. Although the application of magnetite nanoparticles for environmental remediation is promising, a full understanding of particle reactivity has been deterred by the propensity of the nanoparticles to aggregate and become colloidally unstable. Attractive magnetic interactions between particles are partially responsible for their aggregation. In this study, we characterized the magnetic behavior of magnetite by determining the saturation magnetization, coercivity, remanent magnetization, susceptibility, and blocking temperature of synthetic magnetite using a superconducting quantum interference device (SQUID). We show how these properties vary in the presence of surface-associated solutes such as tetramethylammonium (TMA(+)) and ferrous (Fe(II)) cations. More importantly, because magnetite readily reacts with O(2) to produce maghemite, we analyzed the effect of oxidation on the magnetic properties of the particles. Because maghemite has a reported magnetic saturation that is less than that of magnetite, we hypothesized that oxidation would decrease the magnitude of the magnetic attractive force between adjacent particles. The presence of TMA(+) and Fe(II) caused a change in the magnetic properties of magnetite potentially because of alterations in its crystalline order. Magnetite oxidation caused a decrease in saturation magnetization, resulting in less significant magnetic interactions between particles. Oxidation, therefore, could lead to the decreased aggregation of magnetite nanoparticles and a potential enhancement of their colloidal stability.


Environmental Toxicology and Chemistry | 2009

Aquatic photochemistry of chlorinated triclosan derivatives: Potential source of polychlorodibenzo‐P‐dioxins

Jeffrey M. Buth; Matthew Grandbois; Peter J. Vikesland; Kristopher McNeill; William A. Arnold

Triclosan (TCS; 5-chloro-2-(2,4-dichlorophenoxy)phenol), a common antimicrobial agent, may react with residual chlorine in tap water during transport to wastewater treatment plants or during chlorine disinfection of wastewater, generating chlorinated TCS derivatives (CTDs): 4,5-dichloro-2-(2,4-dichlorophenoxy)phenol (4-Cl-TCS), 5,6-dichloro-2-(2,4-dichlorophenoxy)phenol (6-Cl-TCS), and 4,5,6-trichloro-2-(2,4-dichlorophenoxy)phenol (4,6-Cl-TCS). The photochemistry of CTDs was investigated due to the potential formation of polychlorodibenzo-p-dioxin (PCDD) photoproducts. Photolysis rates were highly dependent upon CTD speciation, because the phenolate species degraded 44 to 586 times faster than the phenol forms. Photolysis quantum yield values for TCS, 4-Cl-TCS, 6-Cl-TCS, and 4,6-Cl-TCS of 0.39, 0.07, 0.29, and 0.05, respectively, were determined for the phenolate species. Photolyses performed in Mississippi River and Lake Josephine (USA) waters gave similar quantum yields as buffered, pure water at the same pH, indicating that indirect photolysis processes involving photosensitization of dissolved organic matter are not competitive with direct photolysis. The photochemical conversion of the three CTDs to PCDDs under solar irradiation was confirmed in natural and buffered, pure water at yields of 0.5 to 2.5%. The CTD-derived PCDDs possess higher toxicities than 2,8-dichlorodibenzo-p-dioxin, a previously identified photoproduct of TCS, due to their higher chlorine substitution in the lateral positions. The load of TCS- and CTD-derived PCDDs to United States surface waters is estimated to be between 46 and 92 g toxicity equivalent units per year. Other identified photoproducts of each CTD were 2,4-dichlorophenol and reductive dechlorination products.


Environmental science. Nano | 2014

Environmental science and engineering applications of nanocellulose-based nanocomposites

Haoran Wei; Katia Rodriguez; Scott Renneckar; Peter J. Vikesland

Compared with cellulose, the primary component of the paper we use every day, nanocellulose has a much smaller diameter (typically <10 nm) that renders it many unique properties. Amongst many others, these properties include high mechanical strength, large surface area and low visual light scattering. Nanocellulose can be obtained by disintegration of plant cellulose pulp or by the action of specific types of bacteria. Once produced, nanocellulose can be used to make transparent films, fibers, hydrogels, or aerogels that exhibit extraordinary mechanical, thermal, and optical properties. Each of these substrates is a suitable template or carrier for inorganic nanoparticles (NPs), thus enabling production of nanocomposites that possess properties of the two constituents. In this review, we focus on the preparation of nanocellulose, nanocellulose films, and nanocellulose papers, and introduce nanocellulose-based nanocomposites and their environmental applications.


Journal of Contaminant Hydrology | 2003

Longevity of granular iron in groundwater treatment processes: changes in solute transport properties over time.

Peter J. Vikesland; Jörg Klausen; Hubert Zimmermann; A. Lynn Roberts; William P. Ball

Although progress has been made toward understanding the surface chemistry of granular iron and the mechanisms through which it attenuates groundwater contaminants, potential long-term changes in the solute transport properties of granular iron media have until now received relatively little attention. As part of column investigations of alterations in the reactivity of granular iron, studies using tritiated water (3H(2)O) as a conservative and non-partitioning tracer were periodically conducted to independently isolate transport-related effects on performance from those more directly related to surface reactivity. Hydraulic residence time distributions (HRTDs) within each of six 39-cm columns exposed to bicarbonate solutions were obtained over the course of 1100 days of operation. First moment analyses of the data revealed generally modest increases in mean pore water velocity (v) over time, indicative of decreasing water-filled porosity. Gravimetric measurements provided independent estimates of water-filled porosity that were initially consistent with those obtained from 3H(2)O tracer tests, although at later times, porosities derived from gravimetric measurements deviated from the tracer test results owing to mineral precipitation. The combination of gravimetric measurements and 3H(2)O tracer studies furnished estimates of precipitated mineral mass; depending on the assumed identity of the predominant mineral phase(s), the porosity decrease associated with solute precipitation amounted to 6-24% of the initial porosity. The accumulation of mineral and gas phases led to the formation of regions of immobile water and increased spreading of the tracer pulse. Application of a dual-region transport model to the 3H(2)O breakthrough curves revealed that the immobile water-filled region increased from initially negligible values to amounts ranging between 3% and 14% of the total porosity in later periods of operation. For the aged columns, mobile-immobile mass transfer coefficients (k(mt)) were generally in the range of 0.1-1.0 day(-1) and reflected a slow exchange of 3H(2)O between the two regions. Additional model calculations incorporating sorption and reaction suggest that although changes in HRTD can have an appreciable effect on trichloroethylene (TCE) transformation, the effect is likely to be minor relative to that stemming from passivation of the granular iron surface.


Environmental Science & Technology | 2014

Controlled Evaluation of Silver Nanoparticle Sulfidation in a Full-Scale Wastewater Treatment Plant

Ronald D. Kent; Joel G. Oser; Peter J. Vikesland

Sulfidation of silver nanoparticles (AgNPs), which is known to alter AgNP toxicity, occurs during transport through wastewater treatment plants. In this study, arrays of immobilized AgNPs fabricated by nanosphere lithography (NSL) were used to study AgNP sulfidation in a full-scale wastewater treatment plant (WWTP). A detailed laboratory study preceded field deployment. The characteristic NSL pattern remained discernible by atomic force microscopy and transmission electron microscopy after both lab and field exposures. Growth of AgNPs due to an increase in density upon sulfidation permitted the study of sulfidation kinetics in the WWTP. Sulfidation occurred almost exclusively in anaerobic zones of the WWTP, where the initial sulfidation rate was 11-14 nm of Ag converted to Ag2S per day. Measurements of the chemical composition and crystallinity of AgNPs exposed to primary influent for ∼ 10 d confirmed that they had been converted almost entirely to Ag2S. Laboratory experiments revealed that the sulfidation process is not uniform and that partially sulfidized AgNPs retain the potential to release toxic Ag(+) ions. The results indicate that primary AgNPs are sulfidized directly without dissolving and forming secondary precipitates. This study demonstrates the utility of immobilized AgNPs for detailed, in situ investigations of nanomaterial tranformations.

Collaboration


Dive into the Peter J. Vikesland's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge