Peter K. Nicholls
Prince Henry's Institute of Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter K. Nicholls.
Spermatogenesis [P] | 2011
Liza O'Donnell; Peter K. Nicholls; Moira K. O'Bryan; Robert I. McLachlan; Peter G. Stanton
Spermiation is the process by which mature spermatids are released from Sertoli cells into the seminiferous tubule lumen prior to their passage to the epididymis. It takes place over several days at the apical edge of the seminiferous epithelium, and involves several discrete steps including remodelling of the spermatid head and cytoplasm, removal of specialized adhesion structures and the final disengagement of the spermatid from the Sertoli cell. Spermiation is accomplished by the co-ordinated interactions of various structures, cellular processes and adhesion complexes which make up the “spermiation machinery”. This review addresses the morphological, ultrastructural and functional aspects of mammalian spermiation. The molecular composition of the spermiation machinery, its dynamic changes and regulatory factors are examined. The causes of spermiation failure and their impact on sperm morphology and function are assessed in an effort to understand how this process may contribute to sperm count suppression during contraception and to phenotypes of male infertility.
Endocrinology | 2009
Peter K. Nicholls; Craig A. Harrison; Robert B. Gilchrist; Paul G. Farnworth; Peter G. Stanton
Oocyte-secreted growth differentiation factor (GDF) 9 and bone morphogenetic protein (BMP) 15 are critical regulatory factors in female reproduction. Together, they promote granulosa cell proliferation and stimulate the maturation of preovulatory follicles. Despite their importance in female fertility, GDF9 and BMP15 expression patterns and function during spermatogenesis have not been investigated. In this study we show that the expression and stage-specific localization of both factors are limited to the germ cells of the rat seminiferous epithelium, with GDF9 being principally localized in round spermatids and BMP15 in gonocytes and pachytene spermatocytes. To identify potential cellular targets for GDF9 actions, cells of the seminiferous tubule were isolated and screened for the expression of signaling receptors [activin-like kinase (ALK) 5, ALK6, and BMP receptor, type II)]. Individual receptor types were expressed throughout the seminiferous epithelium, but coexpression of ALK5 and BMP receptor, type II was limited to Sertoli cells and round spermatids. Based on the reproductive actions of related TGFbeta ligands in the ovary and testis, GDF9 was assessed for its ability to regulate tight junction function and inhibin B production in rat Sertoli cell cultures. When recombinant mouse GDF9 was added to immature Sertoli cell cultures, it inhibited membrane localization of the junctional proteins claudin-11, occludin, and zonula occludens-1, thereby disrupting tight junction integrity. Concomitantly, GDF9 up-regulated inhibin subunit expression and significantly stimulated dimeric inhibin B protein production. Together, these results demonstrate that GDF9 and BMP15 are germ cell-specific factors in the rat testis, and that GDF9 can modulate key Sertoli cell functions.
Reproductive Biology and Endocrinology | 2009
Irene Papageorgiou; Peter K. Nicholls; Fang Wang; Martin Lackmann; Yogeshwar Makanji; Lois A. Salamonsen; David M. Robertson; Craig A. Harrison
BackgroundThe human endometrium is unique in its capacity to remodel constantly throughout adult reproductive life. Although the processes of tissue damage and breakdown in the endometrium have been well studied, little is known of how endometrial regeneration is achieved after menstruation. Nodal, a member of the transforming growth factor-beta superfamily, regulates the processes of pattern formation and differentiation that occur during early embryo development.MethodsIn this study, the expression of Nodal, Cripto (co-receptor) and Lefty A (antagonist) was examined by RT-PCR and immunohistochemistry across the menstrual cycle and in endometrial carcinomas.ResultsNodal and Cripto were found to be expressed at high levels in both stromal and epithelial cells during the proliferative phase of the menstrual cycle. Although immunoreactivity for both proteins in surface and glandular epithelium was maintained at relatively steady-state levels across the cycle, their expression was significantly decreased within the stromal compartment by the mid-secretory phase. Lefty expression, as has previously been reported, was primarily restricted to glandular epithelium and surrounding stroma during the late secretory and menstrual phases. In line with recent studies that have shown that Nodal pathway activity is upregulated in many human cancers, we found that Nodal and Cripto immunoreactivity increased dramatically in the transition from histologic Grade 1 to histologic Grades 2 and 3 endometrial carcinomas. Strikingly, Lefty expression was low or absent in all cancer tissues.ConclusionThe expression of Nodal in normal and malignant endometrial cells that lack Lefty strongly supports an important role for this embryonic morphogen in the tissue remodelling events that occur across the menstrual cycle and in tumourogenesis.
Journal of Proteome Research | 2010
Andrew N. Stephens; Natalie J. Hannan; Adam Rainczuk; Katie Meehan; Jenny I.-C. Chen; Peter K. Nicholls; Luk Rombauts; Peter G. Stanton; David M. Robertson; Lois A. Salamonsen
Endometriosis is a chronic disorder affecting approximately 10% of women in whom endometrial tissue forms painful lesions outside the uterus. It has a major impact on their physical, mental and social well-being but has no known cure, and there is no nonsurgical means of diagnosis. We have used a proteomic approach to identify proteins with altered abundance in the eutopic endometrium of endometriosis patients in the midsecretory phase of the menstrual cycle. 2D-differential in gel electrophoresis (DIGE) and mass spectrometry identified 20 proteins that were present at different levels in endometriosis patients (p < 0.05), many of which have not previously been associated with endometriosis. Protein abundance changes did not correlate well with published gene array data, emphasizing the extensive post-translational modification that occurs in this tissue. Abundance or localization changes in endometrial tissue were validated by immunohistochemistry and Western blotting for three proteins, vimentin (VIM), peroxiredoxin 6 (PRDX6), and ribonuclease/angiogenin inhibitor 1 (RNH1), while observed changes could not be confirmed for coronin 1A (CORO1A) or transgelin (TAGLN2). In addition, multiple charge and size isoforms were observed for PDRX6 and vimentin (VIM), and an additional PDRX6 isoform was observed in endometriosis patients that was below the level of detection in healthy women. Biological pathway analysis identified that cytoskeletal remodeling via keratin intermediate filaments, processing of the cystic fibrosis transmembrane receptor (CFTR), the glucocorticoid receptor subunit alpha (GCR), and heat shock factor 1 (HSF1) were all significantly over-represented features in endometriosis patients. This study highlights the highly dynamic nature of endometrial tissue and suggests that considerable post-translational modification of proteins is a key factor in the pathology of endometriosis.
Molecular Endocrinology | 2009
Maree Bilandzic; Simon Chu; Paul G. Farnworth; Craig A. Harrison; Peter K. Nicholls; Yao Wang; Ruth M. Escalona; Peter J. Fuller; Jock K. Findlay; Kaye L. Stenvers
Betaglycan is a type III TGFbeta receptor that modulates cellular sensitivity to inhibins and TGFbeta. Previous studies have suggested that betaglycan acts as a tumor suppressor in certain human epithelial cancers. However, the roles of betaglycan in ovarian granulosa cell tumors (GCTs) are poorly understood. The objective of this study was to determine whether human GCTs exhibit betaglycan expression and, if so, what impact this receptor has on tumor biology. Real-time PCR was used to quantify betaglycan transcripts in human GCTs (n = 17) and normal premenopausal ovaries (n = 11). This analysis established that GCTs exhibited a significant 2-fold lower mean betaglycan mRNA level as compared with the normal ovary (P < 0.05). Similarly, two human GCT cell lines, KGN and COV434, exhibited low betaglycan expression and poor responsiveness to TGFbeta and inhibin A in luciferase reporter assays, which was restored by stable transfection of wild-type betaglycan. Betaglycan significantly increased the adhesion of COV434 (P < 0.05) and KGN (P < 0.0001) cells, decreased cellular invasion through Matrigel, and inhibited wound healing. Expression of mutant forms of betaglycan that are defective in TGFbeta and/or inhibin binding in each GCT cell line revealed that the inhibitory effects of betaglycan on wound healing were most strongly linked to the inhibin-binding region of betaglycan. Furthermore, knockdown of INHA mRNA expression abrogated the betaglycan-mediated inhibition of wound healing and invasion, whereas both INHA silencing and TGFbeta neutralization abolished the betaglycan-mediated increase in adhesion to substrate. These data suggest that loss of betaglycan contributes to the pathogenesis of GCTs.
Biology of Reproduction | 2012
Mark J. McCabe; Charles M. Allan; Caroline Foo; Peter K. Nicholls; Kirsten J. McTavish; Peter G. Stanton
ABSTRACT Sertoli cell tight junctions (TJs) form at puberty as a major component of the blood-testis barrier (BTB), which is essential for spermatogenesis. This study characterized the hormonal induction of functional Sertoli cell TJ formation in vivo using the gonadotropin-deficient hypogonadal (hpg) mouse that displays prepubertal spermatogenic arrest. Androgen actions were determined in hpg mice treated for 2 or 10 days with dihydrotestosterone (DHT). Follicle-stimulating hormone (FSH) actions were studied in hpg mice expressing transgenic human FSH (hpg+tgFSH) with or without DHT treatment. TJ formation was examined by mRNA expression and immunolocalization of TJ proteins claudin-3 and claudin-11, and barrier functionality was examined by biotin tracer permeability. Immunolocalization of claudin-3 and claudin-11 was extensive at wild-type (wt) Sertoli cell TJs, which functionally excluded permeability tracer. In contrast, seminiferous tubules of hpg testes lacked claudin-3, but claudin-11 protein was present in adluminal regions of Sertoli cells. Biotin tracer permeated throughout these tubules, demonstrating dysfunctional TJs. In hpg+tgFSH testes, claudin-3 was generally absent, but claudin-11 had redistributed basally toward the TJs, where function was variable. In hpg testes, DHT treatment stimulated the redistribution of claudin-11 protein toward the basal region of Sertoli cells by Day 2, increased Cldn3 and Cldn11 mRNA expression, then induced the formation of functional TJs containing both proteins by Day 10. In hpg+tgFSH testes, TJ protein redistribution was accelerated and functional TJs formed by Day 2 of DHT treatment. We conclude that androgen stimulates initial Sertoli cell TJ formation and function in mice, whereas FSH activity is insufficient alone, but augments androgen-induced TJ function.
Biology of Reproduction | 2013
Min Du; J'Nelle S. Young; Marc De Asis; Jane Cipollone; Calvin D. Roskelley; Yoshimi Takai; Peter K. Nicholls; Peter G. Stanton; Wanyin Deng; B. Brett Finlay; A. Wayne Vogl
ABSTRACT Tubulobulbar complexes are cytoskeleton-related membrane structures that develop at sites of intercellular attachment in mammalian seminiferous epithelium. At apical junctions between Sertoli cells and spermatids, the structures internalize adhesion junctions and are a component of the sperm release mechanism. Here we explore the possibility that tubulobulbar complexes that form at the blood-testis barrier are subcellular machines that internalize basal junction complexes. Using electron microscopy, we confirmed that morphologically identifiable tight and gap junctions are present in basal tubulobulbar complexes in rats. In addition, immunological probes for claudin-11 (CLDN11), connexin-43 (GJA1), and nectin-2 (PVRL2) react with linear structures at the light level that we interpret as tubulobulbar complexes, and probes for early endosome antigen 1 (EEA1) and Rab5 (RAB5A) react in similar locations. Significantly, fluorescence patterns for actin and claudin-11 indicate that the amount of junction present is dramatically reduced over the time period that tubulobulbar complexes are known to be most prevalent during spermatogenesis. We also demonstrated, using electron microscopy and fluorescence microscopy, that tubulobulbar complexes develop at basal junctions in primary cultures of Sertoli cells and that like their in vivo counterparts, the structures contain junction proteins. We use this culture system together with transfection techniques to show that junction proteins from one transfected cell occur in structures that project into adjacent nontransfected cells as predicted by the junction internalization hypothesis. On the basis of our findings, we present a new model for basal junction remodeling as it relates to spermatocyte translocation in the seminiferous epithelium.
Molecular and Cellular Endocrinology | 2013
Peter K. Nicholls; Craig A. Harrison; Katarzyna Eliza Rainczuk; A. Wayne Vogl; Peter G. Stanton
From puberty and throughout adult spermatogenesis, retinoid signalling is essential for germ cell differentiation and male fertility. The initiation of spermatogonial differentiation and germ cell meiosis occurs under the direction of local retinoid signalling in the testis, and corresponds with the final phase of somatic Sertoli cell differentiation at puberty. Here, we consider the cellular and molecular basis of retinoid actions upon Sertoli cell differentiation. Primary rat Sertoli cells were isolated during the pubertal proliferative and quiescent phases at postnatal days 10- and 20- respectively, and cultured with all-trans-retinoic acid. We show that retinoid signalling can potently suppress activin-induced proliferation by antagonising G1 phase progression and entry into the cell cycle. Retinoid signalling was also found to initiate tight junction formation in primary Sertoli cells, consistent with a pro-differentiative role. This study implicates retinoid signalling in the differentiation of both somatic and germ cells in the testis at puberty.
Reproductive Biology and Endocrinology | 2010
Joanne Yap; Lois A. Salamonsen; Tom Jobling; Peter K. Nicholls; Evdokia Dimitriadis
BackgroundInterleukin (IL) 11 is produced by human endometrium and endometrial cancer tissue. It has roles in endometrial epithelial cell adhesion and trophoblast cell invasion, two important processes in cancer progression. This study aimed to determine the levels of IL11 in uterine lavage fluid in women with endometrial cancer and postmenopausal women. It further aimed to determine the levels of IL11 protein and its signaling molecules in human endometrial cancer of varying grades, and endometrium from postmenopausal women and IL11 signalling mechanisms in endometrial cancer cell lines.MethodsIL11 levels in uterine lavage were measured by ELISA. IL11, IL11 receptor(R) α, phosphorylated (p) STAT3 and SOCS3 were examined by immunohistochemistry in endometrial carcinomas and in control endometrium from postmenopausal women and normal cycling women. The effect of IL11 on pSTAT3/STAT3 and SOCS3 protein abundance in endometrial cancer cell lines and non-cancer endometrial epithelial cells was determined by Western blot.ResultsIL11 was present in uterine flushings and was significantly higher in women with Grade 1 carcinomas compared to postmenopausal women (p < 0.05). IL11 immunostaining was significantly elevated in the endometrial tumour epithelial cells from Grade 1 and 3 compared to endometrial epithelium from postmenopausal and cycling women. IL11Rα immunostaining intensity was increased in cancer epithelium in the Grades 1 and 2 tumours compared to epithelium from postmenopausal women. Both IL11 and IL11Rα localized to vascular endothelial and smooth muscle cells while IL11 also localized to subsets of leucocytes in the cancer tissues. pSTAT3 was found in both the tumour epithelial and stromal compartments but was maximal in the tumour epithelial cells, while SOCS3 was predominantly found in the tumour epithelial cells. pSTAT3 staining intensity was significantly higher in Grade 1 and 2 tumour epithelial cells compared to epithelial cells from cycling and postmenopausal women. SOCS3 staining intensity did not differ between between each tumour and postmenopausal endometrial epithelium but SOCS3 in cycling endometrium was significantly higher compared to postmonopausal and Tumour Grades 2 and 3. IL11 increased pSTAT3/STAT3 in all tumour cell lines, while SOCS3 abundance was increased only in one tumour cell line.ConclusionsThe present study suggests that IL11 in uterine washings may be useful as a diagnostic marker for early stage endometrial cancer. It indicates that IL11, along with its specific receptor, IL11Rα, and downstream signalling molecules, STAT3 and SOCS3, are likely to play a role in the progression of endometrial carcinoma. The precise role of IL11 in endometrial cancer remains to be elucidated.
Endocrinology | 2014
Jenna T. Haverfield; Sarah J. Meachem; Peter K. Nicholls; Katarzyna Eliza (Kate) Rainczuk; Evan R. Simpson; Peter G. Stanton
The blood-testis barrier (BTB) sequesters meiotic spermatocytes and differentiating spermatids away from the vascular environment. We aimed to assess whether meiosis and postmeiotic differentiation could occur when the BTB is permeable. Using a model of meiotic suppression and reinitiation, BTB function was assessed using permeability tracers of small, medium, and large (0.6-, 70-, and 150-kDa) sizes to emulate blood- and lymphatic-borne factors that could cross the BTB. Adult rats (n = 9/group) received the GnRH antagonist acyline (10 wk) to suppress gonadotropins, followed by testosterone (24cm Silastic implant), for 2, 4, 7, 10, 15, and 35 days. In acyline-suppressed testes, all tracers permeated the seminiferous epithelium. As spermatocytes up to diplotene stage XIII reappeared, both the 0.6- and 70-kDa tracers, but not 150 kDa, permeated around these cells. Intriguingly, the 0.6- and 70-kDa tracers were excluded from pachytene spermatocytes at stages VII and VIII but not in subsequent stages. The BTB became progressively impermeable to the 0.6- and 70-kDa tracers as stages IV-VII round spermatids reappeared in the epithelium. This coincided with the appearance of the tight junction protein, claudin-12, in Sertoli cells and at the BTB. We conclude that meiosis can occur when the BTB is permeable to factors up to 70 kDa during the reinitiation of spermatogenesis. Moreover, BTB closure corresponds with the presence of particular pachytene spermatocytes and round spermatids. This research has implications for understanding the effects of BTB dynamics in normal spermatogenesis and also potentially in states where spermatogenesis is suppressed, such as male hormonal contraception or infertility.