Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Langridge is active.

Publication


Featured researches published by Peter Langridge.


Science | 2010

Breeding technologies to increase crop production in a changing world.

Mark Tester; Peter Langridge

To feed the several billion people living on this planet, the production of high-quality food must increase with reduced inputs, but this accomplishment will be particularly challenging in the face of global environmental change. Plant breeders need to focus on traits with the greatest potential to increase yield. Hence, new technologies must be developed to accelerate breeding through improving genotyping and phenotyping methods and by increasing the available genetic diversity in breeding germplasm. The most gain will come from delivering these technologies in developing countries, but the technologies will have to be economically accessible and readily disseminated. Crop improvement through breeding brings immense value relative to investment and offers an effective approach to improving food security.


Nature | 2012

A physical, genetic and functional sequence assembly of the barley genome

Klaus F. X. Mayer; Robbie Waugh; Peter Langridge; Timothy J. Close; Roger P. Wise; Andreas Graner; Takashi Matsumoto; Kazuhiro Sato; Alan H. Schulman; Ruvini Ariyadasa; Daniela Schulte; Naser Poursarebani; Ruonan Zhou; Burkhard Steuernagel; Martin Mascher; Uwe Scholz; Bu-Jun Shi; Kavitha Madishetty; Jan T. Svensson; Prasanna R. Bhat; Matthew J. Moscou; Josh Resnik; Gary J. Muehlbauer; Peter E. Hedley; Hui Liu; Jenny Morris; Zeev Frenkel; Avraham Korol; Hélène Bergès; Marius Felder

Barley (Hordeum vulgare L.) is among the world’s earliest domesticated and most important crop plants. It is diploid with a large haploid genome of 5.1 gigabases (Gb). Here we present an integrated and ordered physical, genetic and functional sequence resource that describes the barley gene-space in a structured whole-genome context. We developed a physical map of 4.98 Gb, with more than 3.90 Gb anchored to a high-resolution genetic map. Projecting a deep whole-genome shotgun assembly, complementary DNA and deep RNA sequence data onto this framework supports 79,379 transcript clusters, including 26,159 ‘high-confidence’ genes with homology support from other plant genomes. Abundant alternative splicing, premature termination codons and novel transcriptionally active regions suggest that post-transcriptional processing forms an important regulatory layer. Survey sequences from diverse accessions reveal a landscape of extensive single-nucleotide variation. Our data provide a platform for both genome-assisted research and enabling contemporary crop improvement.


Journal of Experimental Botany | 2010

Genetic and genomic tools to improve drought tolerance in wheat

Delphine Fleury; S. P. Jefferies; Haydn Kuchel; Peter Langridge

Tolerance to drought is a quantitative trait, with a complex phenotype, often confounded by plant phenology. Breeding for drought tolerance is further complicated since several types of abiotic stress, such as high temperatures, high irradiance, and nutrient toxicities or deficiencies can challenge crop plants simultaneously. Although marker-assisted selection is now widely deployed in wheat, it has not contributed significantly to cultivar improvement for adaptation to low-yielding environments and breeding has relied largely on direct phenotypic selection for improved performance in these difficult environments. The limited success of the physiological and molecular breeding approaches now suggests that a careful rethink is needed of our strategies in order to understand better and breed for drought tolerance. A research programme for increasing drought tolerance of wheat should tackle the problem in a multi-disciplinary approach, considering interaction between multiple stresses and plant phenology, and integrating the physiological dissection of drought-tolerance traits and the genetic and genomics tools, such as quantitative trait loci (QTL), microarrays, and transgenic crops. In this paper, recent advances in the genetics and genomics of drought tolerance in wheat and barley are reviewed and used as a base for revisiting approaches to analyse drought tolerance in wheat. A strategy is then described where a specific environment is targeted and appropriate germplasm adapted to the chosen environment is selected, based on extensive definition of the morpho-physiological and molecular mechanisms of tolerance of the parents. This information was used to create structured populations and develop models for QTL analysis and positional cloning.


Science | 2007

Boron-Toxicity Tolerance in Barley Arising from Efflux Transporter Amplification

Tim Sutton; Ute Baumann; Julie Hayes; Nicholas C. Collins; Bu-Jun Shi; Thorsten Schnurbusch; Alison Hay; Gwenda M Mayo; Margaret Pallotta; Mark Tester; Peter Langridge

Both limiting and toxic soil concentrations of the essential micronutrient boron represent major limitations to crop production worldwide. We identified Bot1, a BOR1 ortholog, as the gene responsible for the superior boron-toxicity tolerance of the Algerian barley landrace Sahara 3771 (Sahara). Bot1 was located at the tolerance locus by high-resolution mapping. Compared to intolerant genotypes, Sahara contains about four times as many Bot1 gene copies, produces substantially more Bot1 transcript, and encodes a Bot1 protein with a higher capacity to provide tolerance in yeast. Bot1 transcript levels identified in barley tissues are consistent with a role in limiting the net entry of boron into the root and in the disposal of boron from leaves via hydathode guttation.


Theoretical and Applied Genetics | 1991

Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction

S. Weining; Peter Langridge

SummaryThe polymerase chain reaction (PCR) can be used to detect polymorphisms in the length of amplified sequences between the annealing sites of two synthetic DNA primers. When the distance varies between two individuals then the banding pattern generated by the PCR reaction is essentially a genetic polymorphism and can be mapped in the same way as other genetic markers. This procedure has been used in a number of eukaryotes. Here we report the use of PCR to detect genetic polymorphisms in cereals. Known gene sequences can be used to design primers and detect polymorphic PCR products. This is demonstrated with primers to the α-amylase gene family. A second approach is to use semi-random primers to target diverse regions of the genome. For this purpose the consensus sequences at the intron-exon splice junctions were used. The targeting of the intronexon splice junctions in conjunction with primers of random and defined sequences, such as α-amylase, provides a source of extensive variation in PCR products. These polymorphisms can be mapped as standard genetic markers.


Analytical Biochemistry | 1980

Extraction of nucleic acids from agarose gels

J. Langridge; Peter Langridge; P.L. Bergquist

Abstract A rapid, simple and versatile method is described for the extraction from agarose gels of small plasmid molecules and DNA fragments generated by restriction endonucleases. The method may be used also for the extraction of RNA from agarose-urea gels. It is based on the partitioning of nucleic acid molecules into 1-butanol as their quaternary ammonium salts, leaving the neutral agarose in the aqueous phase. The nucleic acid is then recovered as the sodium salt by partition back into an aqueous phase. Nucleic acid samples were found to be unaffected by the treatment, as judged by their ability to be ligated, transformed, nick-translated, and used in an in vitro protein-synthesizing system.


Genetics | 2005

Extreme Population-Dependent Linkage Disequilibrium Detected in an Inbreeding Plant Species, Hordeum vulgare

Katherine S. Caldwell; Joanne Russell; Peter Langridge; W. Powell

In human genetics a detailed knowledge of linkage disequilibrium (LD) is considered a prerequisite for effective population-based, high-resolution gene mapping and cloning. Similar opportunities exist for plants; however, differences in breeding system and population history need to be considered. Here we report a detailed study of localized LD in different populations of an inbreeding crop species. We measured LD between and within four gene loci within the region surrounding the hardness locus in three different gene pools of barley (Hordeum vulgare). We demonstrate that LD extends to at least 212 kb in elite barley cultivars but is rapidly eroded in related inbreeding ancestral populations. Our results indicate that haplotype-based sequence analysis in multiple populations will provide new opportunities to adjust the resolution of association studies in inbreeding crop species.


Nature | 2013

Agriculture: Feeding the future

Susan R. McCouch; Gregory J. Baute; James Bradeen; Paula J. Bramel; Edward S. Buckler; John M. Burke; David Charest; Sylvie Cloutier; Glenn Cole; Hannes Dempewolf; Michael Dingkuhn; Catherine Feuillet; Paul Gepts; Dario Grattapaglia; Luigi Guarino; Scott A. Jackson; Sandra Knapp; Peter Langridge; Amy Lawton-Rauh; Qui Lijua; Charlotte Lusty; Todd P. Michael; Sean Myles; Ken Naito; Randall L. Nelson; Reno Pontarollo; Christopher M. Richards; Loren H. Rieseberg; Jeffrey Ross-Ibarra; Steve Rounsley

Humanity depends on fewer than a dozen of the approximately 300,000 species of flowering plants for 80% of its caloric intake. And we capitalize on only a fraction of the genetic diversity that resides within each of these species. This is not enough to support our food system in the future. Food availability must double in the next 25 years to keep pace with population and income growth around the world. Already, food-production systems are precarious in the face of intensifying demand, climate change, soil degradation and water and land shortages. Farmers have saved the seeds of hundreds of crop species and hundreds of thousands of ‘primitive’ varieties (local domesticates called landraces), as well as the wild relatives of crop species and modern varieties no longer in use. These are stored in more than 1,700 gene banks worldwide. Maintaining the 11 international gene-bank collections alone costs about US


Journal of Experimental Botany | 2008

Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars

Ali Izanloo; Anthony G. Condon; Peter Langridge; Mark Tester; Thorsten Schnurbusch

18 million a year.


Nature | 2017

A chromosome conformation capture ordered sequence of the barley genome

Martin Mascher; Heidrun Gundlach; Axel Himmelbach; Sebastian Beier; Sven O. Twardziok; Thomas Wicker; Volodymyr Radchuk; Christoph Dockter; Peter E. Hedley; Joanne Russell; Micha Bayer; Luke Ramsay; Hui Liu; Georg Haberer; Xiao-Qi Zhang; Qisen Zhang; Roberto A. Barrero; Lin Li; Marco Groth; Marius Felder; Alex Hastie; Hana Šimková; Helena Staňková; Jan Vrána; Saki Chan; María Muñoz-Amatriaín; Rachid Ounit; Steve Wanamaker; Daniel M. Bolser; Christian Colmsee

In the South Australian wheat belt, cyclic drought is a frequent event represented by intermittent periods of rainfall which can occur around anthesis and post-anthesis in wheat. Three South Australian bread wheat (Triticum aestivum L.) cultivars, Excalibur, Kukri, and RAC875, were evaluated in one greenhouse and two growth-room experiments. In the first growth-room experiment, where plants were subjected to severe cyclic water-limiting conditions, RAC875 and Excalibur (drought-tolerant) showed significantly higher grain yield under cyclic water availability compared to Kukri (drought-susceptible), producing 44% and 18% more grain compared to Kukri, respectively. In the second growth-room experiment, where plants were subjected to a milder drought stress, the differences between cultivars were less pronounced, with only RAC875 showing significantly higher grain yield under the cyclic water treatment. Grain number per spike and the percentage of aborted tillers were the major components that affected yield under cyclic water stress. Excalibur and RAC875 adopted different morpho-physiological traits and mechanisms to reduce water stress. Excalibur was most responsive to cyclic water availability and showed the highest level of osmotic adjustment (OA), high stomatal conductance, lowest ABA content, and rapid recovery from stress under cyclic water stress. RAC875 was more conservative and restrained, with moderate OA, high leaf waxiness, high chlorophyll content, and slower recovery from stress. Within this germplasm, the capacity for osmotic adjustment was the main physiological attribute associated with tolerance under cyclic water stress which enabled plants to recover from water deficit.

Collaboration


Dive into the Peter Langridge's collaboration.

Top Co-Authors

Avatar

Sergiy Lopato

Australian Centre for Plant Functional Genomics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ute Baumann

Australian Centre for Plant Functional Genomics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Sutton

South Australian Research and Development Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Delphine Fleury

Australian Centre for Plant Functional Genomics

View shared research outputs
Top Co-Authors

Avatar

Margaret Pallotta

Australian Centre for Plant Functional Genomics

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge