Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neil J. Shirley is active.

Publication


Featured researches published by Neil J. Shirley.


Science | 2006

Cellulose Synthase-Like CslF Genes Mediate the Synthesis of Cell Wall (1,3;1,4)-ß-d-Glucans

Rachel A. Burton; Sarah M. Wilson; Maria Hrmova; Andrew J. Harvey; Neil J. Shirley; Anne Medhurst; Bruce A. Stone; Ed Newbigin; Antony Bacic; Geoffrey B. Fincher

A characteristic feature of grasses and commercially important cereals is the presence of (1,3;1,4)-β-d-glucans in their cell walls. We have used comparative genomics to link a major quantitative trait locus for (1,3;1,4)-β-d-glucan content in barley grain to a cluster of cellulose synthase–like CslF genes in rice. After insertion of rice CslF genes into Arabidopsis, we detected (1,3;1,4)-β-d-glucan in walls of transgenic plants using specific monoclonal antibodies and enzymatic analysis. Because wild-type Arabidopsis does not contain CslF genes or have (1,3;1,4)-β-d-glucans in its walls, these experiments provide direct, gain-of-function evidence for the participation of rice CslF genes in (1,3;1,4)-β-d-glucan biosynthesis.


Plant Physiology | 2004

The CesA Gene Family of Barley. Quantitative Analysis of Transcripts Reveals Two Groups of Co-Expressed Genes

Rachel A. Burton; Neil J. Shirley; Brendon J. King; Andrew J. Harvey; Geoffrey B. Fincher

Sequence data from cDNA and genomic clones, coupled with analyses of expressed sequence tag databases, indicate that the CesA (cellulose synthase) gene family from barley (Hordeum vulgare) has at least eight members, which are distributed across the genome. Quantitative polymerase chain reaction has been used to determine the relative abundance of mRNA transcripts for individual HvCesA genes in vegetative and floral tissues, at different stages of development. To ensure accurate expression profiling, geometric averaging of multiple internal control gene transcripts has been applied for the normalization of transcript abundance. Total HvCesA mRNA levels are highest in coleoptiles, roots, and stems and much lower in floral tissues, early developing grain, and in the elongation zone of leaves. In most tissues, HvCesA1, HvCesA2, and HvCesA6 predominate, and their relative abundance is very similar; these genes appear to be coordinately transcribed. A second group, comprising HvCesA4, HvCesA7, and HvCesA8, also appears to be coordinately transcribed, most obviously in maturing stem and root tissues. The HvCesA3 expression pattern does not fall into either of these two groups, and HvCesA5 transcript levels are extremely low in all tissues. Thus, the HvCesA genes fall into two general groups of three genes with respect to mRNA abundance, and the co-expression of the groups identifies their products as candidates for the rosettes that are involved in cellulose biosynthesis at the plasma membrane. Phylogenetic analysis allows the two groups of genes to be linked with orthologous Arabidopsis CesA genes that have been implicated in primary and secondary wall synthesis.


Plant Physiology | 2008

The Genetics and Transcriptional Profiles of the Cellulose Synthase-Like HvCslF Gene Family in Barley

Rachel A. Burton; Stephen A. Jobling; Andrew J. Harvey; Neil J. Shirley; D. E. Mather; Antony Bacic; Geoffrey B. Fincher

Cellulose synthase-like CslF genes have been implicated in the biosynthesis of (1,3;1,4)-β-d-glucans, which are major cell wall constituents in grasses and cereals. Seven CslF genes from barley (Hordeum vulgare) can be divided into two classes on the basis of intron-exon arrangements. Four of the HvCslF genes have been mapped to a single locus on barley chromosome 2H, in a region corresponding to a major quantitative trait locus for grain (1,3;1,4)-β-d-glucan content. The other HvCslF genes map to chromosomes 1H, 5H, and 7H, and in two cases the genes are close to other quantitative trait loci for grain (1,3;1,4)-β-d-glucan content. Spatial and temporal patterns of transcription of the seven genes have been defined through quantitative polymerase chain reaction. In developing barley coleoptiles HvCslF6 mRNA is most abundant. Transcript levels are maximal in 4- to 5-d coleoptiles, at a time when (1,3;1,4)-β-d-glucan content of coleoptile cell walls also reaches maximal levels. In the starchy endosperm of developing grain, HvCslF6 and HvCslF9 transcripts predominate. Two peaks of transcription are apparent. One occurs just after endosperm cellularization, 4 to 8 d after pollination, while the second occurs much later in grain development, more than 20 d after pollination. Marked varietal differences in transcription of the HvCslF genes are observed during endosperm development. Given the commercial importance of cereal (1,3;1,4)-β-d-glucans in human nutrition, in stock feed, and in malting and brewing, the observation that only two genes, HvCslF6 and HvCslF9, are transcribed at high levels in developing grain is of potential relevance for the future manipulation of grain (1,3;1,4)-β-d-glucan levels.


Nature Genetics | 2015

The pineapple genome and the evolution of CAM photosynthesis

Ray Ming; Robert VanBuren; Ching Man Wai; Haibao Tang; Michael C. Schatz; John E. Bowers; Eric Lyons; Ming Li Wang; Jung Chen; Eric Biggers; Jisen Zhang; Lixian Huang; Lingmao Zhang; Wenjing Miao; Jian Zhang; Zhangyao Ye; Chenyong Miao; Zhicong Lin; Hao Wang; Hongye Zhou; Won Cheol Yim; Henry D. Priest; Chunfang Zheng; Margaret R. Woodhouse; Patrick P. Edger; Romain Guyot; Hao Bo Guo; Hong Guo; Guangyong Zheng; Ratnesh Singh

Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency, and the second most important tropical fruit. We sequenced the genomes of pineapple varieties F153 and MD2 and a wild pineapple relative, Ananas bracteatus accession CB5. The pineapple genome has one fewer ancient whole-genome duplication event than sequenced grass genomes and a conserved karyotype with seven chromosomes from before the ρ duplication event. The pineapple lineage has transitioned from C3 photosynthesis to CAM, with CAM-related genes exhibiting a diel expression pattern in photosynthetic tissues. CAM pathway genes were enriched with cis-regulatory elements associated with the regulation of circadian clock genes, providing the first cis-regulatory link between CAM and circadian clock regulation. Pineapple CAM photosynthesis evolved by the reconfiguration of pathways in C3 plants, through the regulatory neofunctionalization of preexisting genes and not through the acquisition of neofunctionalized genes via whole-genome or tandem gene duplication.


Genetics | 2008

An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L).

Nicholas C. Collins; Neil J. Shirley; M. Saeed; Margaret Pallotta; J. P. Gustafson

Aluminum toxicity is a major problem in agriculture worldwide. Among the cultivated Triticeae, rye (Secale cereale L.) is one of the most Al tolerant and represents an important potential source of Al tolerance for improvement of wheat. The Alt4 Al-tolerance locus of rye contains a cluster of genes homologous to the single-copy Al-activated malate transporter (TaALMT1) Al-tolerance gene of wheat. Tolerant (M39A-1-6) and intolerant (M77A-1) rye haplotypes contain five and two genes, respectively, of which two (ScALMT1-M39.1 and ScALMT1-M39.2) and one (ScALMT1-M77.1) are highly expressed in the root tip, typically the main site of plant Al tolerance/susceptibility. All three transcripts are upregulated by exposure to Al. High-resolution genetic mapping identified two resistant lines resulting from recombination within the gene cluster. These recombinants exclude all genes flanking the gene cluster as candidates for controlling Alt4 tolerance, including a homolog of the barley HvMATE Al-tolerance gene. In the recombinants, one hybrid gene containing a chimeric open reading frame and the ScALMT1-M39.1 gene each appeared to be sufficient to provide full tolerance. mRNA splice variation was observed for two of the rye ALMT1 genes and in one case, was correlated with a ∼400-bp insertion in an intron.


PLOS ONE | 2010

Improved Salinity Tolerance of Rice Through Cell Type-Specific Expression of AtHKT1;1

Darren Plett; Gehan Safwat; Matthew Gilliham; Inge Skrumsager Møller; Stuart J. Roy; Neil J. Shirley; Andrew K. Jacobs; Alexander A. T. Johnson; Mark Tester

Previously, cell type-specific expression of AtHKT1;1, a sodium transporter, improved sodium (Na+) exclusion and salinity tolerance in Arabidopsis. In the current work, AtHKT1;1, was expressed specifically in the root cortical and epidermal cells of an Arabidopsis GAL4-GFP enhancer trap line. These transgenic plants were found to have significantly improved Na+ exclusion under conditions of salinity stress. The feasibility of a similar biotechnological approach in crop plants was explored using a GAL4-GFP enhancer trap rice line to drive expression of AtHKT1;1 specifically in the root cortex. Compared with the background GAL4-GFP line, the rice plants expressing AtHKT1;1 had a higher fresh weight under salinity stress, which was related to a lower concentration of Na+ in the shoots. The root-to-shoot transport of 22Na+ was also decreased and was correlated with an upregulation of OsHKT1;5, the native transporter responsible for Na+ retrieval from the transpiration stream. Interestingly, in the transgenic Arabidopsis plants overexpressing AtHKT1;1 in the cortex and epidermis, the native AtHKT1;1 gene responsible for Na+ retrieval from the transpiration stream, was also upregulated. Extra Na+ retrieved from the xylem was stored in the outer root cells and was correlated with a significant increase in expression of the vacuolar pyrophosphatases (in Arabidopsis and rice) the activity of which would be necessary to move the additional stored Na+ into the vacuoles of these cells. This work presents an important step in the development of abiotic stress tolerance in crop plants via targeted changes in mineral transport.


Plant Biotechnology Journal | 2011

Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-β-D-glucans and alters their fine structure

Rachel A. Burton; Helen M. Collins; Natalie A. J. Kibble; Jessica Anne Smith; Neil J. Shirley; Stephen A. Jobling; Marilyn Henderson; Rohan Singh; Filomena Pettolino; Sarah M. Wilson; Anthony R. Bird; David L. Topping; Antony Bacic; Geoffrey B. Fincher

Cell walls in commercially important cereals and grasses are characterized by the presence of (1,3;1,4)-β-d-glucans. These polysaccharides are beneficial constituents of human diets, where they can reduce the risk of hypercholesterolemia, type II diabetes, obesity and colorectal cancer. The biosynthesis of cell wall (1,3;1,4)-β-d-glucans in the Poaceae is mediated, in part at least, by the cellulose synthase-like CslF family of genes. Over-expression of the barley CslF6 gene under the control of an endosperm-specific oat globulin promoter results in increases of more than 80% in (1,3;1,4)-β-d-glucan content in grain of transgenic barley. Analyses of (1,3;1,4)-β-d-glucan fine structure indicate that individual CslF enzymes might direct the synthesis of (1,3;1,4)-β-d-glucans with different structures. When expression of the CslF6 transgene is driven by the Pro35S promoter, the transgenic lines have up to sixfold higher levels of (1,3;1,4)-β-d-glucan in leaves, but similar levels as controls in the grain. Some transgenic lines of Pro35S:CslF4 also show increased levels of (1,3;1,4)-β-d-glucans in grain, but not in leaves. Thus, the effects of CslF genes on (1,3;1,4)-β-d-glucan levels are dependent not only on the promoter used, but also on the specific member of the CslF gene family that is inserted into the transgenic barley lines. Altering (1,3;1,4)-β-d-glucan levels in grain and vegetative tissues will have potential applications in human health, where (1,3;1,4)-β-d-glucans contribute to dietary fibre, and in tailoring the composition of biomass cell walls for the production of bioethanol from cereal crop residues and grasses.


Plant Cell and Environment | 2010

Variation in salinity tolerance and shoot sodium accumulation in Arabidopsis ecotypes linked to differences in the natural expression levels of transporters involved in sodium transport

Deepa Jha; Neil J. Shirley; Mark Tester; Stuart J. Roy

Salinity tolerance can be attributed to three different mechanisms: Na+ exclusion from the shoot, Na+ tissue tolerance and osmotic tolerance. Although several key ion channels and transporters involved in these processes are known, the variation in expression profiles and the effects of these proteins on Na+ transport in different accessions of the same species are unknown. Here, expression profiles of the genes AtHKT1;1, AtSOS1, AtNHX1 and AtAVP1 are determined in four ecotypes of Arabidopsis thaliana. Not only are these genes differentially regulated between ecotypes, the expression levels of the genes can be linked to the concentration of Na+ in the plant. An inverse relationship was found between AtSOS1 expression in the root and total plant Na+ accumulation, supporting a role for AtSOS1 in Na+ efflux from the plant. Similarly, ecotypes with high expression levels of AtHKT1;1 in the root had lower shoot Na+ concentrations, due to the hypothesized role of AtHKT1;1 in retrieval of Na+ from the transpiration stream. The inverse relationship between shoot Na+ concentration and salinity tolerance typical of most cereal crop plants was not demonstrated, but a positive relationship was found between salt tolerance and levels of AtAVP1 expression, which may be related to tissue tolerance.


PLOS ONE | 2012

A Two-Staged Model of Na+ Exclusion in Rice Explained by 3D Modeling of HKT Transporters and Alternative Splicing

Olivier Cotsaftis; Darren Plett; Neil J. Shirley; Mark Tester; Maria Hrmova

The HKT family of Na+ and Na+/K+ transporters is implicated in plant salinity tolerance. Amongst these transporters, the cereal HKT1;4 and HKT1;5 are responsible for Na+ exclusion from photosynthetic tissues, a key mechanism for plant salinity tolerance. It has been suggested that Na+ is retrieved from the xylem transpiration stream either in the root or the leaf sheath, protecting the leaf blades from excessive Na+ accumulation. However, direct evidence for this scenario is scarce. Comparative modeling and evaluation of rice (Oryza sativa) HKT-transporters based on the recent crystal structure of the bacterial TrkH K+ transporter allowed to reconcile transcriptomic and physiological data. For OsHKT1;5, both transcript abundance and protein structural features within the selectivity filter could control shoot Na+ accumulation in a range of rice varieties. For OsHKT1;4, alternative splicing of transcript and the anatomical complexity of the sheath needed to be taken into account. Thus, Na+ accumulation in a specific leaf blade seems to be regulated by abundance of a correctly spliced OsHKT1;4 transcript in a corresponding sheath. Overall, allelic variation of leaf blade Na+ accumulation can be explained by a complex interplay of gene transcription, alternative splicing and protein structure.


BMC Genomics | 2006

Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat.

Wayne Crismani; Ute Baumann; Tim Sutton; Neil J. Shirley; Tracie Webster; German Spangenberg; Peter Langridge; Jason A. Able

BackgroundOur understanding of the mechanisms that govern the cellular process of meiosis is limited in higher plants with polyploid genomes. Bread wheat is an allohexaploid that behaves as a diploid during meiosis. Chromosome pairing is restricted to homologous chromosomes despite the presence of homoeologues in the nucleus. The importance of wheat as a crop and the extensive use of wild wheat relatives in breeding programs has prompted many years of cytogenetic and genetic research to develop an understanding of the control of chromosome pairing and recombination. The rapid advance of biochemical and molecular information on meiosis in model organisms such as yeast provides new opportunities to investigate the molecular basis of chromosome pairing control in wheat. However, building the link between the model and wheat requires points of data contact.ResultsWe report here a large-scale transcriptomics study using the Affymetrix wheat GeneChip® aimed at providing this link between wheat and model systems and at identifying early meiotic genes. Analysis of the microarray data identified 1,350 transcripts temporally-regulated during the early stages of meiosis. Expression profiles with annotated transcript functions including chromatin condensation, synaptonemal complex formation, recombination and fertility were identified. From the 1,350 transcripts, 30 displayed at least an eight-fold expression change between and including pre-meiosis and telophase II, with more than 50% of these having no similarities to known sequences in NCBI and TIGR databases.ConclusionThis resource is now available to support research into the molecular basis of pairing and recombination control in the complex polyploid, wheat.

Collaboration


Dive into the Neil J. Shirley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antony Bacic

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergiy Lopato

Australian Centre for Plant Functional Genomics

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Harvey

Australian Centre for Plant Functional Genomics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qisen Zhang

Australian Centre for Plant Functional Genomics

View shared research outputs
Researchain Logo
Decentralizing Knowledge