Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Lobel is active.

Publication


Featured researches published by Peter Lobel.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Structure of a cholesterol-binding protein deficient in Niemann–Pick type C2 disease

Natalia Friedland; Heng-Ling Liou; Peter Lobel; Ann M. Stock

Niemann–Pick disease type C2 (NP-C2) is a fatal hereditary disease characterized by accumulation of low-density lipoprotein-derived cholesterol in lysosomes. Here we report the 1.7-Å resolution crystal structure of the cholesterol-binding protein deficient in this disease, NPC2, and the characterization of its ligand binding properties. Human NPC2 binds the cholesterol analog dehydroergosterol with submicromolar affinity at both acidic and neutral pH. NPC2 has an Ig-like fold stabilized by three disulfide bonds. The structure of the bovine protein reveals a loosely packed region penetrating from the surface into the hydrophobic core that forms adjacent small cavities with a total volume of ≈160 Å3. We propose that this region represents the incipient cholesterol-binding site that dilates to accommodate an ≈740-Å3 cholesterol molecule.


The EMBO Journal | 2000

A mutation in the ovine cathepsin D gene causes a congenital lysosomal storage disease with profound neurodegeneration

Jaana Tyynelä; Istvan Sohar; David E. Sleat; Rosalie M. Gin; Robert Donnelly; Marc Baumann; Matti Haltia; Peter Lobel

The neuronal ceroid lipofuscinoses (NCLs) constitute a group of neurodegenerative storage diseases characterized by progressive psychomotor retardation, blindness and premature death. Pathologically, there is accumulation of autofluorescent material in lysosome‐derived organelles in a variety of cell types, but neurons in the central nervous system appear to be selectively affected and undergo progressive death. In this report we show that a novel form of NCL, congenital ovine NCL, is caused by a deficiency in the lysosomal aspartyl proteinase cathepsin D. A single nucleotide mutation in the cathepsin D gene results in conversion of an active site aspartate to asparagine, leading to production of an enzymatically inactive but stable protein. This results in severe cerebrocortical atrophy and early death, providing strong evidence for an important role of cathepsin D in neuronal development and/or homeostasis.


Journal of Biological Chemistry | 2006

Mechanism of Cholesterol Transfer from the Niemann-Pick Type C2 Protein to Model Membranes Supports a Role in Lysosomal Cholesterol Transport

Sunita R. Cheruku; Zhi Xu; Roxanne Dutia; Peter Lobel; Judith Storch

Cells acquire cholesterol either by de novo synthesis in the endoplasmic reticulum or by internalization of cholesterol-containing lipoproteins, particularly low density lipoprotein (LDL), via receptor-mediated endocytosis. The inherited disorder Niemann-Pick type C (NPC), in which abnormal LDL-cholesterol trafficking from the endo/lysosomal compartment leads to substantial cholesterol and glycolipid accumulation in lysosomes, is caused by defects in either of two genes that encode for proteins designated as NPC1 and NPC2. NPC2 is a small intralysosomal protein that has been characterized biochemically as a cholesterol binding protein. We determined the rate and mechanism by which NPC2 delivers cholesterol to model phospholipid membranes. A fluorescence dequenching assay was used to monitor the kinetics of cholesterol transfer from the protein to membranes. The endogenous tryptophan fluorescence of the NPC2 was quenched upon binding of cholesterol, and the subsequent addition of acceptor vesicles resulted in dequenching of the tryptophan signal, enabling the monitoring of cholesterol transfer to membranes. The rates of cholesterol transfer were evaluated as a function of acceptor vesicle concentration, acceptor vesicle phospholipid headgroup composition, and aqueous phase properties. The results suggest that NPC2 rapidly transports cholesterol to phospholipid vesicles via a collisional mechanism which involves a direct interaction with the acceptor membrane. Transfer of cholesterol to membranes is faster in an acidic environment and is greatly enhanced by the presence of the unique lysosomal/late endosomal phospholipid lyso-bisphosphatidic acid (LBPA) (also known as bismonoacylglycerol phosphate). Finally, we found that the rate of transfer of cholesterol from vesicles to NPC2 was dramatically increased by the presence of lyso-bisphosphatidic acid in the donor vesicles. These results support a role for the NPC2 protein in the egress of LDL derived cholesterol out of the endosomal/lysosomal compartment.


Biochimica et Biophysica Acta | 2009

Proteomics of the lysosome

Torben Lübke; Peter Lobel; David E. Sleat

Defects in lysosomal function have been associated with numerous monogenic human diseases typically classified as lysosomal storage diseases. However, there is increasing evidence that lysosomal proteins are also involved in more widespread human diseases including cancer and Alzheimer disease. Thus, there is a continuing interest in understanding the cellular functions of the lysosome and an emerging approach to this is the identification of its constituent proteins by proteomic analyses. To date, the mammalian lysosome has been shown to contain approximately 60 soluble luminal proteins and approximately 25 transmembrane proteins. However, recent proteomic studies based upon affinity purification of soluble components or subcellular fractionation to obtain both soluble and membrane components suggest that there may be many more of both classes of protein resident within this organelle than previously appreciated. Discovery of such proteins has important implications for understanding the function and the dynamics of the lysosome but can also lead the way towards the discovery of the genetic basis for human diseases of hitherto unknown etiology. Here, we describe current approaches to lysosomal proteomics and data interpretation and review the new lysosomal proteins that have recently emerged from such studies.


Journal of Biological Chemistry | 2007

Structural Basis of Sterol Binding by NPC2, a Lysosomal Protein Deficient in Niemann-Pick Type C2 Disease

Sujuan Xu; Brian Benoff; Heng-Ling Liou; Peter Lobel; Ann M. Stock

NPC2 is a small lysosomal glycoprotein that binds cholesterol with submicromolar affinity. Deficiency in NPC2 is the cause of Niemann-Pick type C2 disease, a fatal neurovisceral disorder characterized by accumulation of cholesterol in lysosomes. Here we report the crystal structure of bovine NPC2 bound to cholesterol-3-O-sulfate, an analog that binds with greater apparent affinity than cholesterol. Structures of both apo-bound and sterol-bound NPC2 were observed within the same crystal lattice, with an asymmetric unit containing one molecule of apoNPC2 and two molecules of sterol-bound NPC2. As predicted from a previously determined structure of apoNPC2, the sterol binds in a deep hydrophobic pocket sandwiched between the two β-sheets of NPC2, with only the sulfate substituent of the ligand exposed to solvent. In the two available structures of apoNPC2, the incipient ligand-binding pocket, which ranges from a loosely packed hydrophobic core to a small tunnel, is too small to accommodate cholesterol. In the presence of sterol, the pocket expands, facilitated by a slight separation of the β-strands and substantial reorientation of some side chains, resulting in a perfect molding of the pocket around the hydrocarbon portion of cholesterol. A notable feature is the repositioning of two aromatic residues at the tunnel entrance that are essential for NPC2 function. The NPC2 structures provide evidence of a malleable binding site, consistent with the previously documented broad range of sterol ligand specificity.


American Journal of Human Genetics | 2001

Niemann-Pick Disease Type C: Spectrum of HE1 Mutations and Genotype/Phenotype Correlations in the NPC2 Group

Gilles Millat; Karim Chikh; Saule Naureckiene; David E. Sleat; Anthony H. Fensom; Katsumi Higaki; Milan Elleder; Peter Lobel; Marie T. Vanier

In Niemann-Pick disease type C (NPC), a genetic heterogeneity with two complementation groups--NPC1, comprising > or =95% of the families, and NPC2--has been demonstrated. Mutations in the NPC1 gene have now been well characterized. HE1 was recently identified as the gene underlying the very rare NPC2. Here we report the first comprehensive study of eight unrelated families with NPC2, originating from France, Algeria, Italy, Germany, the Czech Republic, and Turkey. These cases represent essentially all patients with NPC2 who have been reported in the literature, as well as those known to us. All 16 mutant alleles were identified, but only five different mutations, all with a severe impact on the protein, were found; these five mutations were as follows: two nonsense mutations (E20X and E118X), a 1-bp deletion (27delG), a splice mutation (IVS2+5G-->A), and a missense mutation (S67P) resulting in reduced amounts of abnormal HE1 protein. E20X, with an overall allele frequency of 56%, was established as the common mutant allele. Prenatal diagnosis was achieved by mutation analysis of an uncultured chorionic-villus sample. All mutations except 27delG were observed in a homozygous state, allowing genotype/phenotype correlations. In seven families (with E20X, E118X, S67P, and E20X/27delG mutations), patients suffered a severe and rapid disease course, with age at death being 6 mo-4 years. A remarkable feature was the pronounced lung involvement, leading, in six patients, to early death caused by respiratory failure. Two patients also developed a severe neurological disease with onset during infancy. Conversely, the splice mutation corresponded to a very different clinical presentation, with juvenile onset of neurological symptoms and prolonged survival. This mutation generated multiple transcripts, including a minute proportion of normally spliced RNA, which may explain the milder phenotype.


The EMBO Journal | 1994

Differential sorting of lysosomal enzymes in mannose 6-phosphate receptor-deficient fibroblasts.

T Ludwig; H Munier-Lehmann; U Bauer; M Hollinshead; Catherine E. Ovitt; Peter Lobel; Hoflack B

In higher eukaryotes, the transport of soluble lysosomal enzymes involves the recognition of their mannose 6‐phosphate signal by two receptors: the cation‐independent mannose 6‐phosphate/insulin‐like growth factor II receptor (CI‐MPR) and the cation‐dependent mannose 6‐phosphate receptor (CD‐MPR). It is not known why these two different proteins are present in most cell types. To investigate their relative function in lysosomal enzyme targeting, we created cell lines that lack either or both MPRs. This was accomplished by mating CD‐MPR‐deficient mice with Thp mice that carry a CI‐MPR deleted allele. Fibroblasts prepared from embryos that lack the two receptors exhibit a massive missorting of multiple lysosomal enzymes and accumulate undigested material in their endocytic compartments. Fibroblasts that lack the CI‐MPR, like those lacking the CD‐MPR, exhibit a milder phenotype and are only partially impaired in sorting. This demonstrates that both receptors are required for efficient intracellular targeting of lysosomal enzymes. More importantly, comparison of the phosphorylated proteins secreted by the different cell types indicates that the two receptors may interact in vivo with different subgroups of hydrolases. This observation may provide a rational explanation for the existence of two distinct mannose 6‐phosphate binding proteins in mammalian cells.


Molecular Therapy | 2008

Intraventricular Enzyme Replacement Improves Disease Phenotypes in a Mouse Model of Late Infantile Neuronal Ceroid Lipofuscinosis

Michael Chang; Jonathan D. Cooper; David E. Sleat; Seng H. Cheng; James Dodge; Marco A. Passini; Peter Lobel; Beverly L. Davidson

Late infantile neuronal ceroid lipofuscinosis (LINCL) is an autosomal recessive neurodegenerative disease caused by mutations in CLN2, which encodes the lysosomal protease tripeptidyl peptidase 1 (TPP1). LINCL is characterized clinically by progressive motor and cognitive decline, and premature death. Enzyme-replacement therapy (ERT) is currently available for lysosomal storage diseases affecting peripheral tissues, but has not been used in patients with central nervous system (CNS) involvement. Enzyme delivery through the cerebrospinal fluid is a potential alternative route to the CNS, but has not been studied for LINCL. In this study, we identified relevant neuropathological and behavioral hallmarks of disease in a mouse model of LINCL and correlated those findings with tissues from LINCL patients. Subsequently, we tested if intraventricular delivery of TPP1 to the LINCL mouse was efficacious. We found that infusion of recombinant human TPP1 through an intraventricular cannula led to enzyme distribution in several regions of the brain of treated mice. In vitro activity assays confirm increased TPP1 activity throughout the rostral-caudal extent of the brain. Importantly, treated mice showed attenuated neuropathology, and decreased resting tremor relative to vehicle-treated mice. This data demonstrates that intraventricular enzyme delivery to the CNS is feasible and may be of therapeutic value.


The Journal of Neuroscience | 2004

A Mouse Model of Classical Late-Infantile Neuronal Ceroid Lipofuscinosis Based on Targeted Disruption of the CLN2 Gene Results in a Loss of Tripeptidyl-Peptidase I Activity and Progressive Neurodegeneration

David E. Sleat; Jennifer A. Wiseman; Mukarram El-Banna; Kwi Hye Kim; Qinwen Mao; Sandy M. Price; Shannon L. Macauley; Richard L. Sidman; Michael M. Shen; Qi Zhao; Marco A. Passini; Beverly L. Davidson; Gregory R. Stewart; Peter Lobel

Mutations in the CLN2 gene, which encodes a lysosomal serine protease, tripeptidyl-peptidase I (TPP I), result in an autosomal recessive neurodegenerative disease of children, classical late-infantile neuronal ceroid lipofuscinosis (cLINCL). cLINCL is inevitably fatal, and there currently exists no cure or effective treatment. In this report, we provide the characterization of the first CLN2-targeted mouse model for cLINCL. CLN2-targeted mice were fertile and apparently healthy at birth despite an absence of detectable TPP I activity. At ∼7 weeks of age, neurological deficiencies became evident with the onset of a tremor that became progressively more severe and was eventually accompanied by ataxia. Lifespan of the affected mice was greatly reduced (median survival, 138 d), and extensive neuronal pathology was observed including a prominent accumulation of cytoplasmic storage material within the lysosomal-endosomal compartment, a loss of cerebellar Purkinje cells, and widespread axonal degeneration. The CLN2-targeted mouse therefore recapitulates much of the pathology and clinical features of cLINCL and represents an animal model that should provide clues to the normal cellular function of TPP I and the pathogenic processes that underlie neuronal death in its absence. In addition, the CLN2-targeted mouse also represents a valuable model for the evaluation of different therapeutic strategies.


The Journal of Neuroscience | 2006

Intracranial Delivery of CLN2 Reduces Brain Pathology in a Mouse Model of Classical Late Infantile Neuronal Ceroid Lipofuscinosis

Marco A. Passini; James Dodge; Jie Bu; Wendy Yang; Qi Zhao; Dolan Sondhi; Neil R. Hackett; Stephen M. Kaminsky; Qinwen Mao; Lamya S. Shihabuddin; Seng H. Cheng; David E. Sleat; Gregory R. Stewart; Beverly L. Davidson; Peter Lobel; Ronald G. Crystal

Classical late infantile neuronal ceroid lipofuscinosis (cLINCL) is a lysosomal storage disorder caused by mutations in CLN2, which encodes lysosomal tripeptidyl peptidase I (TPP1). Lack of TPP1 results in accumulation of autofluorescent storage material and curvilinear bodies in cells throughout the CNS, leading to progressive neurodegeneration and death typically in childhood. In this study, we injected adeno-associated virus (AAV) vectors containing the human CLN2 cDNA into the brains of CLN2−/− mice to determine therapeutic efficacy. AAV2CUhCLN2 or AAV5CUhCLN2 were stereotaxically injected into the motor cortex, thalamus, and cerebellum of both hemispheres at 6 weeks of age, and mice were then killed at 13 weeks after injection. Mice treated with AAV2CUhCLN2 and AAV5CUhCLN2 contained TPP1 activity at each injection tract that was equivalent to 0.5- and 2-fold that of CLN2+/+ control mice, respectively. Lysosome-associated membrane protein 1 immunostaining and confocal microscopy showed intracellular targeting of TPP1 to the lysosomal compartment. Compared with control animals, there was a marked reduction of autofluorescent storage in the AAV2CUhCLN2 and AAV5CUhCLN2 injected brain regions, as well as adjacent regions, including the striatum and hippocampus. Analysis by electron microscopy confirmed a significant decrease in pathological curvilinear bodies in cells. This study demonstrates that AAV-mediated TPP1 enzyme replacement corrects the hallmark cellular pathologies of cLINCL in the mouse model and raises the possibility of using AAV gene therapy to treat cLINCL patients.

Collaboration


Dive into the Peter Lobel's collaboration.

Top Co-Authors

Avatar

David E. Sleat

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar

Istvan Sohar

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dirk F. Moore

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer A. Wiseman

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar

Mukarram El-Banna

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar

Henry Lackland

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge