Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David E. Sleat is active.

Publication


Featured researches published by David E. Sleat.


The EMBO Journal | 2000

A mutation in the ovine cathepsin D gene causes a congenital lysosomal storage disease with profound neurodegeneration

Jaana Tyynelä; Istvan Sohar; David E. Sleat; Rosalie M. Gin; Robert Donnelly; Marc Baumann; Matti Haltia; Peter Lobel

The neuronal ceroid lipofuscinoses (NCLs) constitute a group of neurodegenerative storage diseases characterized by progressive psychomotor retardation, blindness and premature death. Pathologically, there is accumulation of autofluorescent material in lysosome‐derived organelles in a variety of cell types, but neurons in the central nervous system appear to be selectively affected and undergo progressive death. In this report we show that a novel form of NCL, congenital ovine NCL, is caused by a deficiency in the lysosomal aspartyl proteinase cathepsin D. A single nucleotide mutation in the cathepsin D gene results in conversion of an active site aspartate to asparagine, leading to production of an enzymatically inactive but stable protein. This results in severe cerebrocortical atrophy and early death, providing strong evidence for an important role of cathepsin D in neuronal development and/or homeostasis.


Molecular Therapy | 2008

Intraventricular Enzyme Replacement Improves Disease Phenotypes in a Mouse Model of Late Infantile Neuronal Ceroid Lipofuscinosis

Michael Chang; Jonathan D. Cooper; David E. Sleat; Seng H. Cheng; James Dodge; Marco A. Passini; Peter Lobel; Beverly L. Davidson

Late infantile neuronal ceroid lipofuscinosis (LINCL) is an autosomal recessive neurodegenerative disease caused by mutations in CLN2, which encodes the lysosomal protease tripeptidyl peptidase 1 (TPP1). LINCL is characterized clinically by progressive motor and cognitive decline, and premature death. Enzyme-replacement therapy (ERT) is currently available for lysosomal storage diseases affecting peripheral tissues, but has not been used in patients with central nervous system (CNS) involvement. Enzyme delivery through the cerebrospinal fluid is a potential alternative route to the CNS, but has not been studied for LINCL. In this study, we identified relevant neuropathological and behavioral hallmarks of disease in a mouse model of LINCL and correlated those findings with tissues from LINCL patients. Subsequently, we tested if intraventricular delivery of TPP1 to the LINCL mouse was efficacious. We found that infusion of recombinant human TPP1 through an intraventricular cannula led to enzyme distribution in several regions of the brain of treated mice. In vitro activity assays confirm increased TPP1 activity throughout the rostral-caudal extent of the brain. Importantly, treated mice showed attenuated neuropathology, and decreased resting tremor relative to vehicle-treated mice. This data demonstrates that intraventricular enzyme delivery to the CNS is feasible and may be of therapeutic value.


The Journal of Neuroscience | 2004

A Mouse Model of Classical Late-Infantile Neuronal Ceroid Lipofuscinosis Based on Targeted Disruption of the CLN2 Gene Results in a Loss of Tripeptidyl-Peptidase I Activity and Progressive Neurodegeneration

David E. Sleat; Jennifer A. Wiseman; Mukarram El-Banna; Kwi Hye Kim; Qinwen Mao; Sandy M. Price; Shannon L. Macauley; Richard L. Sidman; Michael M. Shen; Qi Zhao; Marco A. Passini; Beverly L. Davidson; Gregory R. Stewart; Peter Lobel

Mutations in the CLN2 gene, which encodes a lysosomal serine protease, tripeptidyl-peptidase I (TPP I), result in an autosomal recessive neurodegenerative disease of children, classical late-infantile neuronal ceroid lipofuscinosis (cLINCL). cLINCL is inevitably fatal, and there currently exists no cure or effective treatment. In this report, we provide the characterization of the first CLN2-targeted mouse model for cLINCL. CLN2-targeted mice were fertile and apparently healthy at birth despite an absence of detectable TPP I activity. At ∼7 weeks of age, neurological deficiencies became evident with the onset of a tremor that became progressively more severe and was eventually accompanied by ataxia. Lifespan of the affected mice was greatly reduced (median survival, 138 d), and extensive neuronal pathology was observed including a prominent accumulation of cytoplasmic storage material within the lysosomal-endosomal compartment, a loss of cerebellar Purkinje cells, and widespread axonal degeneration. The CLN2-targeted mouse therefore recapitulates much of the pathology and clinical features of cLINCL and represents an animal model that should provide clues to the normal cellular function of TPP I and the pathogenic processes that underlie neuronal death in its absence. In addition, the CLN2-targeted mouse also represents a valuable model for the evaluation of different therapeutic strategies.


The Journal of Neuroscience | 2006

Intracranial Delivery of CLN2 Reduces Brain Pathology in a Mouse Model of Classical Late Infantile Neuronal Ceroid Lipofuscinosis

Marco A. Passini; James Dodge; Jie Bu; Wendy Yang; Qi Zhao; Dolan Sondhi; Neil R. Hackett; Stephen M. Kaminsky; Qinwen Mao; Lamya S. Shihabuddin; Seng H. Cheng; David E. Sleat; Gregory R. Stewart; Beverly L. Davidson; Peter Lobel; Ronald G. Crystal

Classical late infantile neuronal ceroid lipofuscinosis (cLINCL) is a lysosomal storage disorder caused by mutations in CLN2, which encodes lysosomal tripeptidyl peptidase I (TPP1). Lack of TPP1 results in accumulation of autofluorescent storage material and curvilinear bodies in cells throughout the CNS, leading to progressive neurodegeneration and death typically in childhood. In this study, we injected adeno-associated virus (AAV) vectors containing the human CLN2 cDNA into the brains of CLN2−/− mice to determine therapeutic efficacy. AAV2CUhCLN2 or AAV5CUhCLN2 were stereotaxically injected into the motor cortex, thalamus, and cerebellum of both hemispheres at 6 weeks of age, and mice were then killed at 13 weeks after injection. Mice treated with AAV2CUhCLN2 and AAV5CUhCLN2 contained TPP1 activity at each injection tract that was equivalent to 0.5- and 2-fold that of CLN2+/+ control mice, respectively. Lysosome-associated membrane protein 1 immunostaining and confocal microscopy showed intracellular targeting of TPP1 to the lysosomal compartment. Compared with control animals, there was a marked reduction of autofluorescent storage in the AAV2CUhCLN2 and AAV5CUhCLN2 injected brain regions, as well as adjacent regions, including the striatum and hippocampus. Analysis by electron microscopy confirmed a significant decrease in pathological curvilinear bodies in cells. This study demonstrates that AAV-mediated TPP1 enzyme replacement corrects the hallmark cellular pathologies of cLINCL in the mouse model and raises the possibility of using AAV gene therapy to treat cLINCL patients.


Journal of Biological Chemistry | 1996

Rat brain contains high levels of mannose-6-phosphorylated glycoproteins including lysosomal enzymes and palmitoyl-protein thioesterase, an enzyme implicated in infantile neuronal lipofuscinosis.

David E. Sleat; Istvan Sohar; Henry Lackland; John Majercak; Peter Lobel

Mannose 6-phosphate (Man-6-P) is a posttranslational carbohydrate modification typical of newly synthesized acid hydrolases that signals targeting from the Golgi apparatus to the lysosome via Man-6-P receptors (MPRs). Using iodinated cation independent MPR as a probe in a Western blot assay, we surveyed levels of Man-6-P glycoproteins in a number of different rat tissues. Considerable variation was observed with respect to total amounts and types of Man-6-P glycoproteins in the different tissues. Brain contained 2-8-fold more Man-6-P glycoproteins than other tissues, with relative abundance being brain ≫ testis ≈ heart > lung ≈ kidney ≈ ovary ≈ spleen > skeletal muscle ≈ liver ≈ serum. Analysis of 16 different lysosomal enzyme activities revealed that brain contains lower activities than other tissues which suggested that decreased removal of Man-6-P results in increased levels of Man-6-P glycoproteins. This was directly demonstrated by comparing activities of phosphorylated lysosomal enzymes, purified by immobilized MPR affinity chromatography, with total activities. The phosphorylated forms accounted for a considerable proportion of the MPR-targeted activities measured in brain (on average, 36.2%) but very little in lung, kidney, and liver (on average, 5.5, 2.3, and 0.7%, respectively). Man-6-P glycoproteins were also isolated from rat brain by MPR affinity chromatography on a preparative scale. Of the 18 bands resolvable by SDS-polyacrylamide gel electrophoresis, seven bands were NH2-terminally sequenced and identified as the known lysosomal enzymes cathepsin L, cathepsin A, cathepsin D, α-galactosidase A, arylsulfatase A, and α-iduronidase. One of the major Man-6-P glycoproteins was identified as palmitoyl protein thioesterase, which was not previously thought to be lysosomal. This finding raises important questions about the cellular location and function of palmitoyl protein thioesterase, mutations in which result in the neurodegenerative disorder, infantile neuronal ceroid lipofuscinosis.


Journal of Biological Chemistry | 1997

Ligand binding specificities of the two mannose 6-phosphate receptors.

David E. Sleat; Peter Lobel

Two mannose 6-phosphate (Man-6-P) receptors (MPRs) direct the vesicular transport of newly synthesized lysosomal enzymes that contain Man-6-P from the Golgi to a prelysosomal compartment. In order to understand the respective roles of the Mr = 46,000 cation-dependent (CD-) MPR and the Mr = 300,000 cation-independent (CI-) MPR in lysosomal targeting, an assay has been developed that simultaneously measures the relative affinity of each MPR for multiple ligands. Glycoproteins containing Man-6-P were affinity-purified from the metabolically labeled secretions of mutant mouse fibroblasts lacking both MPRs. They were incubated with purified MPRs, and the resulting receptor-ligand complexes were immunoprecipitated by anti-MPR monoclonal antibodies coupled to agarose beads. Ligands were eluted with Man-6-P and then quantified following SDS-polyacrylamide gel electrophoresis. Saturating concentrations of CI-MPR resulted in the complete recovery of each Man-6-P glycoprotein in receptor-ligand complexes. Apparent affinity constants ranged between 1 and 5 nM for the individual species. Ligands precipitated by the CD-MPR appeared identical to those bound by the CI-MPR, with apparent affinity constants ranging between 7 and 28 nM. The binding affinities of the two receptors for different ligands were not correlated, indicating that the two MPRs preferentially recognize different subsets of lysosomal enzymes. In addition, saturating levels of CD-MPR resulted in the precipitation of only 50% of the total input ligands, suggesting that the CD-MPR binds a subpopulation of the Man-6-P glycoproteins bound by the CI-MPR. These results provide a biochemical mechanism, which, in part, may explain the interaction of the two MPRs with overlapping yet distinct subsets of ligands in vivo.


Molecular Therapy | 2014

Effective Intravenous Therapy for Neurodegenerative Disease With a Therapeutic Enzyme and a Peptide That Mediates Delivery to the Brain

Yu Meng; Istvan Sohar; David E. Sleat; Jason R. Richardson; Kenneth R. Reuhl; Robert B. Jenkins; Gobinda Sarkar; Peter Lobel

The blood-brain barrier (BBB) presents a major challenge to effective treatment of neurological disorders, including lysosomal storage diseases (LSDs), which frequently present with life-shortening and untreatable neurodegeneration. There is considerable interest in methods for intravenous delivery of lysosomal proteins across the BBB but for the most part, levels achievable in the brain of mouse models are modest and increased lifespan remains to be demonstrated. In this study, we have investigated delivery across the BBB using a mouse model of late-infantile neuronal ceroid lipofuscinosis (LINCL), a neurodegenerative LSD caused by loss of tripeptidyl peptidase I (TPP1). We have achieved supraphysiological levels of TPP1 throughout the brain of LINCL mice by intravenous (IV) coadministration of recombinant TPP1 with a 36-residue peptide that contains polylysine and a low-density lipoprotein receptor binding sequence from apolipoprotein E. Importantly, IV administration of TPP1 with the peptide significantly reduces brain lysosomal storage, increases lifespan and improves neurological function. This simple mix and inject method is immediately applicable towards evaluation of enzyme replacement therapy to the brain in preclinical models and further exploration of its clinical potential is warranted.


PLOS ONE | 2014

Potential Pitfalls and Solutions for Use of Fluorescent Fusion Proteins to Study the Lysosome

Ling Huang; Douglas H. Pike; David E. Sleat; Vikas Nanda; Peter Lobel

Use of fusion protein tags to investigate lysosomal proteins can be complicated by the acidic, protease-rich environment of the lysosome. Potential artifacts include degradation or release of the tag and acid quenching of fluorescence. Tagging can also affect protein folding, glycosylation and/or trafficking. To specifically investigate the use of fluorescent tags to reveal lysosomal localization, we tested mCherry derivatives as C-terminal tags for Niemann-Pick disease type C protein 2 (NPC2), a luminal lysosomal protein. Full-length mCherry was released from the NPC2 chimera while deletion of the 11 N-terminal residues of mCherry generated a cleavage-resistant (cr) fluorescent variant. Insertion of proline linkers between NPC2 and crmCherry had little effect while Gly-Ser linkers promoted cleavage. The NPC2-crmCherry fusion was targeted to the lysosome and restored function in NPC2-deficient cells. Fusion of crmCherry to known and candidate lysosomal proteins revealed that the linkers had different effects on lysosomal localization. Direct fusion of crmCherry impaired mannose 6-phosphorylation and lysosomal targeting of the lysosomal protease tripeptidyl peptidase I (TPP1), while insertion of linkers corrected the defects. Molecular modeling suggested structural bases for the effects of different linkers on NPC2 and TPP1 fusion proteins. While mCherry fusion proteins can be useful tools for studying the lysosome and related organelles, our findings underscore the potential artifacts associated with such applications.


Journal of Biological Chemistry | 1999

Subcellular Localization of Mannose 6-Phosphate Glycoproteins in Rat Brain

Michel Jadot; Li Lin; David E. Sleat; Istvan Sohar; Ming Sing Hsu; John Pintar; Franz Dubois; Simone Wattiaux-De Coninck; Robert Wattiaux; Peter Lobel

The intracellular transport of soluble lysosomal enzymes relies on the post-translational modification ofN-linked oligosaccharides to generate mannose 6-phosphate (Man 6-P) residues. In most cell types the Man 6-P signal is rapidly removed after targeting of the precursor proteins from the Golgi to lysosomes via interactions with Man 6-phosphate receptors. However, in brain, the steady state proportion of lysosomal enzymes containing Man 6-P is considerably higher than in other tissues. As a first step toward understanding the mechanism and biological significance of this observation, we analyzed the subcellular localization of the rat brain Man 6-P glycoproteins by combining biochemical and morphological approaches. The brain Man 6-P glycoproteins are predominantly localized in neuronal lysosomes with no evidence for a steady state localization in nonlysosomal or prelysosomal compartments. This contrasts with the clear endosome-like localization of the low steady state proportion of mannose-6-phosphorylated lysosomal enzymes in liver. It therefore seems likely that the observed high percentage of phosphorylated species in brain is a consequence of the accumulation of lysosomal enzymes in a neuronal lysosome that does not fully dephosphorylate the Man 6-P moieties.


Molecular & Cellular Proteomics | 2017

Accounting for Protein Subcellular Localization: A Compartmental Map of the Rat Liver Proteome

Michel Jadot; Marielle Boonen; Jacqueline Thirion; Nan Wang; Jinchuan Xing; Caifeng Zhao; Abla Tannous; Meiqian Qian; Haiyan Zheng; John K. Everett; Dirk F. Moore; David E. Sleat; Peter Lobel

Accurate knowledge of the intracellular location of proteins is important for numerous areas of biomedical research including assessing fidelity of putative protein-protein interactions, modeling cellular processes at a system-wide level and investigating metabolic and disease pathways. Many proteins have not been localized, or have been incompletely localized, partly because most studies do not account for entire subcellular distribution. Thus, proteins are frequently assigned to one organelle whereas a significant fraction may reside elsewhere. As a step toward a comprehensive cellular map, we used subcellular fractionation with classic balance sheet analysis and isobaric labeling/quantitative mass spectrometry to assign locations to >6000 rat liver proteins. We provide quantitative data and error estimates describing the distribution of each protein among the eight major cellular compartments: nucleus, mitochondria, lysosomes, peroxisomes, endoplasmic reticulum, Golgi, plasma membrane and cytosol. Accounting for total intracellular distribution improves quality of organelle assignments and assigns proteins with multiple locations. Protein assignments and supporting data are available online through the Prolocate website (http://prolocate.cabm.rutgers.edu). As an example of the utility of this data set, we have used organelle assignments to help analyze whole exome sequencing data from an infant dying at 6 months of age from a suspected neurodegenerative lysosomal storage disorder of unknown etiology. Sequencing data was prioritized using lists of lysosomal proteins comprising well-established residents of this organelle as well as novel candidates identified in this study. The latter included copper transporter 1, encoded by SLC31A1, which we localized to both the plasma membrane and lysosome. The patient harbors two predicted loss of function mutations in SLC31A1, suggesting that this may represent a heretofore undescribed recessive lysosomal storage disease gene.

Collaboration


Dive into the David E. Sleat's collaboration.

Top Co-Authors

Avatar

Peter Lobel

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar

Istvan Sohar

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar

Beverly L. Davidson

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer A. Wiseman

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge