Peter Luedike
University of Düsseldorf
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Luedike.
Circulation Research | 2012
Katrin Schröder; Min Zhang; Sebastian Benkhoff; Anja Mieth; Rainer U. Pliquett; Judith Kosowski; Christoph Kruse; Peter Luedike; Norbert Weissmann; Stefanie Dimmeler; Ajay M. Shah; Ralf P. Brandes
Rationale: The function of Nox4, a source of vascular H2O2, is unknown. Other Nox proteins were identified as mediators of endothelial dysfunction. Objective: We determined the function of Nox4 in situations of increased stress induced by ischemia or angiotensin II with global and tamoxifen-inducible Nox4−/− mice. Methods and Results: Nox4 was highly expressed in the endothelium and contributed to H2O2 formation. Nox4−/− mice exhibited attenuated angiogenesis (femoral artery ligation) and PEG-catalase treatment in control mice had a similar effect. Tube formation in cultured Nox4−/− lung endothelial cells (LECs) was attenuated and restored by low concentrations of H2O2, whereas PEG-catalase attenuated tube formation in control LECs. Angiotensin II infusion was used as a model of oxidative stress. Compared to wild-type, aortas from inducible Nox4-deficient animals had development of increased inflammation, media hypertrophy, and endothelial dysfunction. Mechanistically, loss of Nox4 resulted in reduction of endothelial nitric oxide synthase expression, nitric oxide production, and heme oxygenase-1 (HO-1) expression, which was associated with apoptosis and inflammatory activation. HO-1 expression is controlled by Nrf-2. Accordingly, Nox4-deficient LECs exhibited reduced Nrf-2 protein level and deletion of Nox4 reduced Nrf-2 reporter gene activity. In vivo treatment with hemin, an inducer of HO-1, blocked the vascular hypertrophy induced by Nox4 deletion in the angiotensin II infusion model and carbon monoxide, the product of HO-1, blocked the Nox4-deletion-induced apoptosis in LECs. Conclusion: Endogenous Nox4 protects the vasculature during ischemic or inflammatory stress. Different from Nox1 and Nox2, this particular NADPH oxidase therefore may have a protective vascular function.
Stroke | 2007
Timo Kahles; Peter Luedike; Matthias Endres; Hans-Joachim Galla; Helmuth Steinmetz; Rudi Busse; Tobias Neumann-Haefelin; Ralf P. Brandes
Background and Purpose— Cerebral ischemia/reperfusion is associated with reactive oxygen species (ROS) generation, and NADPH oxidases are important sources of ROS. We hypothesized that NADPH oxidases mediate blood-brain barrier (BBB) disruption and contribute to tissue damage in ischemia/reperfusion. Methods— Ischemia was induced by filament occlusion of the middle cerebral artery in mice for 2 hours followed by reperfusion. BBB permeability was measured by Evans blue extravasation. Monolayer permeability was determined from transendothelial electrical resistance of cultured porcine brain capillary endothelial cells. Results— BBB permeability was increased in the ischemic hemisphere 1 hour after reperfusion. In NADPH oxidase–knockout (gp91phox−/−) mice, middle cerebral artery occlusion–induced BBB disruption and lesion volume were largely attenuated compared with those in wild-type mice. Inhibition of NADPH oxidase by apocynin prevented BBB damage. In porcine brain capillary endothelial cells, hypoxia/reoxygenation induced translocation of the NADPH oxidase activator Rac-1 to the membrane. In vivo inhibition of Rac-1 by the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor atorvastatin or Clostridium difficile lethal toxin B also prevented the ischemia/reperfusion–induced BBB disruption. Stimulation of porcine brain capillary endothelial cells with H2O2 increased permeability, an effect attenuated by inhibition of phosphatidyl inositol 3-kinase or c-Jun N-terminal kinase but not blockade of extracellular signal–regulated kinase-1/2 or p38 mitogen-activated protein kinase. Inhibition of Rho kinase completely prevented the ROS-induced increase in permeability and the ROS-induced polymerization of the actin cytoskeleton. Conclusions— Activation of Rac and subsequently of the gp91phox containing NADPH oxidase promotes cerebral ROS formation, which then leads to Rho kinase–mediated endothelial cell contraction and disruption of the BBB. Inhibition of NAPDH oxidase is a promising approach to reduce brain injury after stroke.
Circulation | 2012
Matthias Totzeck; Ulrike B. Hendgen-Cotta; Peter Luedike; Michael Berenbrink; Johann P. Klare; Heinz-Juergen Steinhoff; Dominik Semmler; Sruti Shiva; Daryl R. Williams; Anja Kipar; Mark T. Gladwin; Juergen Schrader; Malte Kelm; Andrew R. Cossins; Tienush Rassaf
Background— Hypoxic vasodilation is a physiological response to low oxygen tension that increases blood supply to match metabolic demands. Although this response has been characterized for >100 years, the underlying hypoxic sensing and effector signaling mechanisms remain uncertain. We have shown that deoxygenated myoglobin in the heart can reduce nitrite to nitric oxide (NO·) and thereby contribute to cardiomyocyte NO· signaling during ischemia. On the basis of recent observations that myoglobin is expressed in the vasculature of hypoxia-tolerant fish, we hypothesized that endogenous nitrite may contribute to physiological hypoxic vasodilation via reactions with vascular myoglobin to form NO·. Methods and Results— We show in the present study that myoglobin is expressed in vascular smooth muscle and contributes significantly to nitrite-dependent hypoxic vasodilation in vivo and ex vivo. The generation of NO· from nitrite reduction by deoxygenated myoglobin activates canonical soluble guanylate cyclase/cGMP signaling pathways. In vivo and ex vivo vasodilation responses, the reduction of nitrite to NO·, and the subsequent signal transduction mechanisms were all significantly impaired in mice without myoglobin. Hypoxic vasodilation studies in myoglobin and endothelial and inducible NO synthase knockout models suggest that only myoglobin contributes to systemic hypoxic vasodilatory responses in mice. Conclusions— Endogenous nitrite is a physiological effector of hypoxic vasodilation. Its reduction to NO· via the heme globin myoglobin enhances blood flow and matches O2 supply to increased metabolic demands under hypoxic conditions.
Circulation | 2012
Ulrike B. Hendgen-Cotta; Peter Luedike; Matthias Totzeck; Martina Kropp; Andreas Schicho; Pia Stock; Christos Rammos; Michael Niessen; Christian Heiss; Jon O. Lundberg; Eddie Weitzberg; Malte Kelm; Tienush Rassaf
Background— Revascularization is an adaptive repair mechanism that restores blood flow to undersupplied ischemic tissue. Nitric oxide plays an important role in this process. Whether dietary nitrate, serially reduced to nitrite by commensal bacteria in the oral cavity and subsequently to nitric oxide and other nitrogen oxides, enhances ischemia-induced remodeling of the vascular network is not known. Methods and Results— Mice were treated with either nitrate (1 g/L sodium nitrate in drinking water) or sodium chloride (control) for 14 days. At day 7, unilateral hind-limb surgery with excision of the left femoral artery was conducted. Blood flow was determined by laser Doppler. Capillary density, myoblast apoptosis, mobilization of CD34+/Flk-1+, migration of bone marrow–derived CD31+/CD45−, plasma S-nitrosothiols, nitrite, and skeletal tissue cGMP levels were assessed. Enhanced green fluorescence protein transgenic mice were used for bone marrow transplantation. Dietary nitrate increased plasma S-nitrosothiols and nitrite, enhanced revascularization, increased mobilization of CD34+/Flk-1+ and migration of bone marrow–derived CD31+/CD45− cells to the site of ischemia, and attenuated apoptosis of potentially regenerative myoblasts in chronically ischemic tissue. The regenerative effects of nitrate treatment were abolished by eradication of the nitrate-reducing bacteria in the oral cavity through the use of an antiseptic mouthwash. Conclusions— Long-term dietary nitrate supplementation may represent a novel nutrition-based strategy to enhance ischemia-induced revascularization.
Circulation | 2012
Peter Luedike; Ulrike B. Hendgen-Cotta; Julia Sobierajski; Matthias Totzeck; Marcel Reeh; Manfred Dewor; Hongqi Lue; Christoph Krisp; Dirk Wolters; Malte Kelm; Jürgen Bernhagen; Tienush Rassaf
Background— Macrophage migration inhibitory factor (MIF) is a structurally unique inflammatory cytokine that controls cellular signaling in human physiology and disease through extra- and intracellular processes. Macrophage migration inhibitory factor has been shown to mediate both disease-exacerbating and beneficial effects, but the underlying mechanism(s) controlling these diverse functions are poorly understood. Methods and Results— Here, we have identified an S-nitros(yl)ation modification of MIF that regulates the protective functional phenotype of MIF in myocardial reperfusion injury. Macrophage migration inhibitory factor contains 3 cysteine (Cys) residues; using recombinant wtMIF and site-specific MIF mutants, we have identified that Cys-81 is modified by S-nitros(yl)ation whereas the CXXC-derived Cys residues of MIF remained unaffected. The selective S-nitrosothiol formation at Cys-81 led to a doubling of the oxidoreductase activity of MIF. Importantly, S-nitrosothiol-MIF formation was measured both in vitro and in vivo and led to a decrease in cardiomyocyte apoptosis in the reperfused heart. This decrease was paralleled by a S-nitrosothiol-MIF– but not Cys81 serine (Ser)–MIF mutant–dependent reduction of infarct size in an in vivo model of myocardial ischemia/reperfusion injury. Conclusions— S-nitros(yl)ation of MIF is a pivotal novel regulatory mechanism, providing enhanced activity resulting in increased cytoprotection in myocardial reperfusion injury.
Free Radical Biology and Medicine | 2012
Christian Heiss; Christian Meyer; Matthias Totzeck; Ulrike B. Hendgen-Cotta; Yvonne Heinen; Peter Luedike; Stefanie Keymel; Nassim Ayoub; Jon O. Lundberg; Eddie Weitzberg; Malte Kelm; Tienush Rassaf
Nitric oxide (NO) was implicated in the regulation of mobilization and function of circulating angiogenic cells (CACs). The supposedly inert anion nitrate, abundant in vegetables, can be stepwise reduced in vivo to form nitrite, and consecutively NO, representing an alternative to endogenous NO formation by NO synthases. This study investigated whether inorganic dietary nitrate influences mobilization of CACs. In a randomized double-blind fashion, healthy volunteers ingested 150 ml water with 0.15 mmol/kg (12.7 mg/kg) of sodium nitrate, an amount corresponding to 100-300 g of a nitrate-rich vegetable, or water alone as control. Mobilization of CACs was determined by the number of CD34(+)/KDR(+) and CD133(+)/KDR(+) cells using flow cytometry and the mobilization markers stem cell factor (SCF) and stromal cell-derived factor-1a (SDF-1α) were determined in plasma via ELISA. Nitrite and nitrate were measured using high-performance liquid chromatography and reductive gas-phase chemiluminescence, respectively. NOS-dependent vasodilation was measured as flow-mediated vasodilation. Further mechanistic studies were performed in mice after intravenous application of nitrite together with an NO scavenger to identify the role of nitrite and NO in CAC mobilization. Nitrate ingestion led to a rise in plasma nitrite together with an acute increase in CD34(+)/KDR(+) and CD133(+)/KDR(+)-CACs along with increased NOS-dependent vasodilation. This was paralleled by an increase in SCF and SDF-1α and the maximal increase in plasma nitrite correlated with CD133(+)/KDR(+)-CACs (r=0.73, P=0.016). In mice, nitrate given per gavage and direct intravenous injection of nitrite led to CAC mobilization, which was abolished by the NO scavenger cPTIO, suggesting that nitrite mediated its effect via formation of NO. Dietary inorganic nitrate acutely mobilizes CACs via serial reduction to nitrite and NO. The nitrate-nitrite-NO pathway could offer a novel nutritional approach for regulation of vascular regenerative processes.
BioMed Research International | 2014
Christos Rammos; Ulrike B. Hendgen-Cotta; Julia Pohl; Matthias Totzeck; Peter Luedike; Volker Schulze; Malte Kelm; Tienush Rassaf
Aging increases the risk for cardiovascular morbidity and mortality. Chronic low-grade inflammation deteriorates vascular function, increases age-related vascular stiffness, and affects hemodynamics. The proinflammatory cytokine macrophage migration inhibitory factor (MIF) is a major mediator of atherosclerosis. Plasma MIF levels are associated with arterial stiffness, a hallmark of vascular aging. Preclinical studies show that blockade of MIF leads to atherosclerotic plaque regression. Nutritional approaches provide opportunities to counteract age-related inflammation. Following a chronic dietary supplementation with the micronutrient nitrate has been demonstrated to improve vascular stiffness. Whether dietary nitrate affects circulating MIF levels is not known. In a randomized placebo-controlled, double-blinded study, elderly subjects received a dietary nitrate supplementation for 4 weeks. Dietary nitrate led to a decrease in plasma MIF levels in the elderly and to an improvement in vascular functions. This was associated with a reduction in central systolic blood pressure. Our data show that supplementation with dietary nitrate is associated with a reduction of circulating MIF levels along with an improvement in vascular function. This supports the concept of dietary approaches to modulate age-related changes of vascular functions.
Free Radical Biology and Medicine | 2013
Julia Sobierajski; Ulrike B. Hendgen-Cotta; Peter Luedike; Pia Stock; Christos Rammos; Christian Meyer; Sandra Kraemer; Christian Stoppe; Jürgen Bernhagen; Malte Kelm; Tienush Rassaf
The analytical validation of a possible biomarker is the first step in the long translational process from basic science to clinical routine. Although the chemokine-like cytokine macrophage migration inhibitory factor (MIF) has been investigated intensively in experimental approaches to various disease conditions, its transition into clinical research is just at the very beginning. Because of its presence in preformed storage pools, MIF is the first cytokine to be released under various stimulation conditions. In the first proof-of-concept studies, MIF levels correlated with the severity and outcome of various disease states. In a recent small study with acute coronary syndrome patients, elevation of MIF was described as a new factor for risk assessment. When these studies are compared, not only MIF levels in diseased patients differ, but also MIF levels in healthy control groups are inconsistent. Blood MIF concentrations in control groups vary between 0.56 and 95.6 ng/ml, corresponding to a 170-fold difference. MIF concentrations in blood were analyzed by ELISA. Other than the influence of this approach due to method-based variations, the impact of preanalytical processing on MIF concentrations is unclear and has not been systematically studied yet. Before large randomized studies are performed to determine the impact of circulating MIF on prognosis and outcome and before MIF is characterized as a diagnostic marker, an accurate protocol for the determination of reproducible MIF levels needs to be validated. In this study, the measurement of MIF in the blood of healthy volunteers was investigated focusing on the potential influence of critical preanalytical factors such as anticoagulants, storage conditions, freeze/thaw stability, hemolysis, and dilution. We show how to avoid pitfalls in the measurement of MIF and that MIF concentrations are highly susceptible to preanalytical factors. MIF serum concentrations are higher than plasma concentrations and show broader ranges. MIF concentrations are higher in samples processed with latency than in those processed directly and strongly correlate with hemoglobin in plasma. Neither storage temperature nor storage length or dilution or repeated freezing and thawing influenced MIF concentrations in plasma. Preanalytical validation of MIF is essential. In summary, we suggest using plasma and not serum samples when determining circulating MIF and avoiding hemolysis by processing samples immediately after blood drawing.
Thrombosis and Haemostasis | 2016
Julia Pohl; Ulrike R. Hendgen-Cotta; Christos Rammos; Peter Luedike; Elena Mull; Christian Stoppe; Karen Jülicher; Hongqi Lue; Marc W. Merx; Malte Kelm; Jürgen Bernhagen; Tienush Rassaf
S-nitrosation of macrophage migration inhibitory factor (MIF) has been shown to be cytoprotective in myocardial ischaemia/reperfusion (I/R) injury. Since the exact mechanism of action is unknown, we here characterise the cardioprotective effects of targeted intracellular accumulation of MIF in myocardial I/R injury. We used different in vivo, ex vivo and in vitro models of myocardial I/R and hypoxia/reoxygenation (H/R) injury to determine MIF levels by immunoblots and ELISA in different phases of reperfusion and reoxygenation, respectively. We discovered a rapid decrease of cardiac MIF that was specific to the early phase of reperfusion. Posttranslational modification of MIF via S-nitrosation--proofed by a modified version of the Biotin Switch Assay--prevented this rapid decrease, leading to a targeted intracellular accumulation of MIF in the early phase of reperfusion. Intracellular MIF accumulation preserved the intracellular ability of MIF to reduce oxidative stress as shown by hydrogen peroxide and aconitase activity measurements. Infarct size measurements by TTC staining showed an overall enhanced cardioprotective effect of this protein by reduction of reperfusion injury. In summary, we have unravelled a novel mechanism of MIF-mediated cardioprotection. Targeted intracellular accumulation of MIF by S-nitrosation may offer a novel therapeutic approach in the treatment of myocardial I/R-injury.
Resuscitation | 2016
Julia Pohl; Christos Rammos; Matthias Totzeck; Pia Stock; Malte Kelm; Tienush Rassaf; Peter Luedike
INTRODUCTIONnFollowing successful resuscitation from cardiac arrest (CA), neurological impairment and other types of organ dysfunction cause significant morbidity and mortality-a condition termed post-cardiac arrest syndrome. Whole-body ischemia/reperfusion with oxygen debt activates immunologic and coagulation pathways increasing the risk of multiple organ failure and infection. We here examined the role of the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF) in post-cardiac arrest syndrome.nnnMETHODSnMIF plasma levels of n=16 patients with return of spontaneous circulation (ROSC) after CA were assessed with a previously validated method and compared to markers of systemic inflammation and cellular damage. ICU patients without former CA and healthy volunteers served as controls.nnnRESULTSnMIF levels in patients after ROSC were higher compared to those in healthy volunteers and ICU patients without CA. Kaplan-Meyer analysis revealed a distinctly elevated mortality since day one that further increased towards an elevated 60-days-mortality in patients with high plasma MIF. ROC curve identified plasma MIF as a predictor for mortality in patients after CA. Correlation with inflammatory parameters revealed that high MIF levels did not mirror post CA inflammatory syndrome, but distinctive cellular damage after ROSC as there were strong correlations with markers of cellular damage like LDH and GOT/GPT.nnnCONCLUSIONnHigh MIF levels were associated with elevated 60-days-mortality and high MIF predicted mortality after CA. We found a close relation between circulating MIF levels and cellular damage, but not with an inflammatory syndrome.