Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter M. Douglas is active.

Publication


Featured researches published by Peter M. Douglas.


Nature | 2012

RPN-6 determines C. elegans longevity under proteotoxic stress conditions

David Vilchez; Ianessa Morantte; Zheng Liu; Peter M. Douglas; Carsten Merkwirth; Ana Cristina P Rodrigues; Gerard Manning; Andrew Dillin

Organisms that protect their germ-cell lineages from damage often do so at considerable cost: limited metabolic resources become partitioned away from maintenance of the soma, leaving the ageing somatic tissues to navigate survival amid an environment containing damaged and poorly functioning proteins. Historically, experimental paradigms that limit reproductive investment result in lifespan extension. We proposed that germline-deficient animals might exhibit heightened protection from proteotoxic stressors in somatic tissues. We find that the forced re-investment of resources from the germ line to the soma in Caenorhabditis elegans results in elevated somatic proteasome activity, clearance of damaged proteins and increased longevity. This activity is associated with increased expression of rpn-6, a subunit of the 19S proteasome, by the FOXO transcription factor DAF-16. Ectopic expression of rpn-6 is sufficient to confer proteotoxic stress resistance and extend lifespan, indicating that rpn-6 is a candidate to correct deficiencies in age-related protein homeostasis disorders.


Journal of Cell Biology | 2010

Protein homeostasis and aging in neurodegeneration

Peter M. Douglas; Andrew Dillin

Genetic and environmental factors responsible for numerous neurodegenerative diseases vary between disorders, yet age remains a universal risk factor. Age-associated decline in protein homeostasis, or proteostasis, enables disease-linked proteins to adopt aberrant tertiary structures, accumulate as higher-ordered aggregates, and cause a myriad of cellular dysfunctions and neuronal death. However, recent findings suggest that the assembly of disease proteins into tightly ordered aggregates can significantly delay proteotoxic onset. Furthermore, manipulation of metabolic pathways through key signaling components extends lifespan, bolsters proteostasis networks, and delays the onset of proteotoxicity. Thus, understanding the relationship between proteostasis and aging has provided important insights into neurodegeneration.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Chaperone-dependent amyloid assembly protects cells from prion toxicity

Peter M. Douglas; Sebastian Treusch; Hong Yu Ren; Randal Halfmann; Martin L. Duennwald; Susan Lindquist; Douglas M. Cyr

Protein conformational diseases are associated with the aberrant accumulation of amyloid protein aggregates, but whether amyloid formation is cytotoxic or protective is unclear. To address this issue, we investigated a normally benign amyloid formed by the yeast prion [RNQ+]. Surprisingly, modest overexpression of Rnq1 protein was deadly, but only when preexisting Rnq1 was in the [RNQ+] prion conformation. Molecular chaperones protect against protein aggregation diseases and are generally believed to do so by solubilizing their substrates. The Hsp40 chaperone, Sis1, suppressed Rnq1 proteotoxicity, but instead of blocking Rnq1 protein aggregation, it stimulated conversion of soluble Rnq1 to [RNQ+] amyloid. Furthermore, interference with Sis1-mediated [RNQ+] amyloid formation exacerbated Rnq1 toxicity. These and other data establish that even subtle changes in the folding homeostasis of an amyloidogenic protein can create a severe proteotoxic gain-of-function phenotype and that chaperone-mediated amyloid assembly can be cytoprotective. The possible relevance of these findings to other phenomena, including prion-driven neurodegenerative diseases and heterokaryon incompatibility in fungi, is discussed.


Science | 2014

HSF-1-mediated cytoskeletal integrity determines thermotolerance and life span

Nathan A. Baird; Peter M. Douglas; Milos S. Simic; Ana R. Grant; James J. Moresco; Suzanne Wolff; John R. Yates; Gerard Manning; Andrew Dillin

The conserved heat shock transcription factor–1 (HSF-1) is essential to cellular stress resistance and life-span determination. The canonical function of HSF-1 is to regulate a network of genes encoding molecular chaperones that protect proteins from damage caused by extrinsic environmental stress or intrinsic age-related deterioration. In Caenorhabditis elegans, we engineered a modified HSF-1 strain that increased stress resistance and longevity without enhanced chaperone induction. This health assurance acted through the regulation of the calcium-binding protein PAT-10. Loss of pat-10 caused a collapse of the actin cytoskeleton, stress resistance, and life span. Furthermore, overexpression of pat-10 increased actin filament stability, thermotolerance, and longevity, indicating that in addition to chaperone regulation, HSF-1 has a prominent role in cytoskeletal integrity, ensuring cellular function during stress and aging. A transcription factor may promote longevity by stabilizing the actin cytoskeleton in nematodes. Cytoskeleton protects from stress and aging The transcription factor HSF-1 has an unexpected second function that allows it to extend longevity in worms. Baird et al. expressed a modified form of HSF-1 in nematodes. The modified protein could not activate genes encoding protein chaperones. Such chaperones are thought to protect many cellular proteins from heat shock and other damage during aging However, the modified protein still extended the worm life span by regulating the transcription of other genes. One gene it regulated was pat-10, which encodes a troponin-like calcium binding protein. Overexpression of PAT-10 also extended worm life span, apparently by changing the stability of the actin cytoskeleton. Science, this issue p. 360


Trends in Biochemical Sciences | 2009

Polypeptide transfer from Hsp40 to Hsp70 molecular chaperones

Daniel W. Summers; Peter M. Douglas; Carlos H.I. Ramos; Douglas M. Cyr

Heat shock protein 40 (Hsp40) co-chaperones assist in cellular protein folding and degradation through the binding and delivery of non-native proteins to heat shock protein 70 (Hsp70). The mechanism for substrate transfer from Hsp40s to Hsp70 is unknown. Two recent studies provide new details that shed light on novel mechanisms for substrate recognition by Hsp40s and a common mechanism for polypeptide transfer to Hsp70.


Prion | 2009

Molecular chaperones antagonize proteotoxicity by differentially modulating protein aggregation pathways

Peter M. Douglas; Daniel W. Summers; Douglas M. Cyr

The self-association of misfolded or damaged proteins into ordered amyloid-like aggregates characterizes numerous neurodegenerative disorders. Insoluble amyloid plaques are diagnostic of many disease states. Yet soluble, oligomeric intermediates in the aggregation pathway appear to represent the toxic culprit. Molecular chaperones regulate the fate of misfolded proteins and thereby influence their aggregation state. Chaperones conventionally antagonize aggregation of misfolded, disease proteins and assist in refolding or degradation pathways. Recent work suggests that chaperones may also suppress neurotoxicity by converting toxic, soluble oligomers into benign aggregates. Chaperones can therefore suppress or promote aggregation of disease proteins to ameliorate the proteotoxic accumulation of soluble, assembly intermediates.


Journal of Biological Chemistry | 2009

The Type I Hsp40 Ydj1 Utilizes a Farnesyl Moiety and Zinc Finger-like Region to Suppress Prion Toxicity

Daniel W. Summers; Peter M. Douglas; Hong Yu Ren; Douglas M. Cyr

Type I Hsp40s are molecular chaperones that protect neurons from degeneration by modulating the aggregation state of amyloid-forming proteins. How Type I Hsp40s recognize β-rich, amyloid-like substrates is currently unknown. Thus, we examined the mechanism for binding between the Type I Hsp40 Ydj1 and the yeast prion [RNQ+]. Ydj1 recognized the Gln/Asn-rich prion domain from Rnq1 specifically when it assembled into the amyloid-like [RNQ+] prion state. Upon deletion of YDJ1, overexpression of the Rnq1 prion domain killed yeast. Surprisingly, binding and suppression of prion domain toxicity by Ydj1 was dependent upon farnesylation of its C-terminal CAAX box and action of a zinc finger-like region. In contrast, folding of luciferase was independent of farnesylation, yet required the zinc finger-like region of Ydj1 and a conserved hydrophobic peptide-binding pocket. Type I Hsp40s contain at least three different domains that work in concert to bind different protein conformers. The combined action of a farnesyl moiety and zinc finger-like region enable Type I Hsp40s to recognize amyloid-like substrates and prevent formation of cytotoxic protein species.


Molecular Biology of the Cell | 2009

Reciprocal efficiency of RNQ1 and polyglutamine detoxification in the cytosol and nucleus

Peter M. Douglas; Daniel W. Summers; Hong Yu Ren; Douglas M. Cyr

Onset of proteotoxicity is linked to change in the subcellular location of proteins that cause misfolding diseases. Yet, factors that drive changes in disease protein localization and the impact of residence in new surroundings on proteotoxicity are not entirely clear. To address these issues, we examined aspects of proteotoxicity caused by Rnq1-green fluorescent protein (GFP) and a huntingtins protein exon-1 fragment with an expanded polyglutamine tract (Htt-103Q), which is dependent upon the intracellular presence of [RNQ+] prions. Increasing heat-shock protein 40 chaperone activity before Rnq1-GFP expression, shifted Rnq1-GFP aggregation from the cytosol to the nucleus. Assembly of Rnq1-GFP into benign amyloid-like aggregates was more efficient in the nucleus than cytosol and nuclear accumulation of Rnq1-GFP correlated with reduced toxicity. [RNQ+] prions were found to form stable complexes with Htt-103Q, and nuclear Rnq1-GFP aggregates were capable of sequestering Htt-103Q in the nucleus. On accumulation in the nucleus, conversion of Htt-103Q into SDS-resistant aggregates was dramatically reduced and Htt-103Q toxicity was exacerbated. Alterations in activity of molecular chaperones, the localization of intracellular interaction partners, or both can impact the cellular location of disease proteins. This, in turn, impacts proteotoxicity because the assembly of proteins to a benign state occurs with different efficiencies in the cytosol and nucleus.


Prion | 2009

Prion propagation by Hsp40 molecular chaperones.

Daniel W. Summers; Peter M. Douglas; Douglas M. Cyr

Molecular chaperones regulate essential steps in the propagation of yeast prions. Yeast prions possess domains enriched in glutamines and asparagines that act as templates to drive the assembly of native proteins into beta-sheet-rich, amyloid-like fibrils. Several recent studies highlight a significant and complex function for Hsp40 co-chaperones in propagation of prion elements in yeast. Hsp40 co-chaperones bind non-native polypeptides and transfer these clients to Hsp70s for refolding or degradation. How Hsp40 co-chaperones bind amyloid-like prion conformers that are enriched in hydrophilic residues such as glutamines and asparagines is a significant question in the field. Interestingly, selective recognition of amyloid-like conformers by distinct Hsp40s appears to confer opposing actions on prion assembly. For example, the Type I Hsp40 Ydj1 and Type II Hsp40 Sis1 bind different regions within the prion protein Rnq1 and function respectively to inhibit or promote [RNQ+] prion assembly. Thus, substrate selectivity enables distinct Hsp40s to act at unique steps in prion propagation.


Biopolymers | 2010

Interplay between protein homeostasis networks in protein aggregation and proteotoxicity

Peter M. Douglas; Douglas M. Cyr

The misfolding and aggregation of disease proteins is characteristic of numerous neurodegenerative diseases. Particular neuronal populations are more vulnerable to proteotoxicity while others are more apt to tolerate the misfolding and aggregation of disease proteins. Thus, the cellular environment must play a significant role in determining whether disease proteins are converted into toxic or benign forms. The endomembrane network of eukaryotes divides the cell into different subcellular compartments that possess distinct sets of molecular chaperones and protein interaction networks. Chaperones act as agonists and antagonists of disease protein aggregation to prevent the accumulation of toxic intermediates in the aggregation pathway. Interacting partners can also modulate the conformation and localization of disease proteins and thereby influence proteotoxicity. Thus, interplay between these protein homeostasis network components can modulate the self-association of disease proteins and determine whether they elicit a toxic or benign outcome.

Collaboration


Dive into the Peter M. Douglas's collaboration.

Top Co-Authors

Avatar

Douglas M. Cyr

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Andrew Dillin

University of California

View shared research outputs
Top Co-Authors

Avatar

Daniel W. Summers

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Hong Yu Ren

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Anwu Zhou

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bruce A. Posner

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chensu Wang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Elizabeth McMillan

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gang Huang

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge