Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter M. Huck is active.

Publication


Featured researches published by Peter M. Huck.


Water Research | 2008

Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound-Naproxen, carbamazepine and nonylphenol-on activated carbon.

Zirui Yu; Sigrid Peldszus; Peter M. Huck

The adsorption of two representative pharmaceutically active compounds (PhACs) (naproxen and carbamazepine) and one endocrine disrupting compound (nonylphenol) were evaluated on two types of activated carbon. When determining their isotherms at environmentally relevant concentration levels, it was found that at this low concentration range (10-800 ng/L), removals of the target compounds were contrary to expectations based on their hydrophobicity. Nonylphenol (log K(ow) 5.8) was most poorly adsorbed, whereas carbamazepine (log K(ow) 2.45) was most adsorbable. Nonylphenol Freundlich isotherms at this very low concentration range had a much higher 1/n compared to isotherms at much higher concentrations. This indicates that extrapolation from an isotherm obtained at a high concentration range to predict the adsorption of nonylphenol at a concentration well below the range of the original isotherm, leads to a substantial overestimation of its removals. Comparison of isotherms for the target compounds to those for other conventional micropollutants suggested that naproxen and carbamazepine could be effectively removed by applying the same dosage utilized to remove odorous compounds (geosmin and MIB) at very low concentrations. The impact of competitive adsorption by background natural organic matter (NOM) on the adsorption of the target compounds was quantified by using the ideal adsorbed solution theory (IAST) in combination with the equivalent background compound (EBC) approach. The fulfilment of the requirements for applying the simplified IAST-EBC model, which leads to the conclusion that the percentage removal of the target compounds at a given carbon dosage is independent of the initial contaminant concentration, was confirmed for the situation examined in the paper. On this basis it is suggested that the estimated minimum carbon usage rates (CURs) to achieve 90% removal of these emerging contaminants would be valid at concentrations of less than 500 ng/L in natural water.


Water Research | 2010

Identifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matrices

Ramila H. Peiris; Cynthia Hallé; Hector Budman; Christine Moresoli; Sigrid Peldszus; Peter M. Huck; Raymond L. Legge

The identification of key foulants and the provision of early warning of high fouling events for drinking water treatment membrane processes is crucial for the development of effective countermeasures to membrane fouling, such as pretreatment. Principal foulants include organic, colloidal and particulate matter present in the membrane feed water. In this research, principal component analysis (PCA) of fluorescence excitation-emission matrices (EEMs) was identified as a viable tool for monitoring the performance of pre-treatment stages (in this case biological filtration), as well as ultrafiltration (UF) and nanofiltration (NF) membrane systems. In addition, fluorescence EEM-based principal component (PC) score plots, generated using the fluorescence EEMs obtained after just 1hour of UF or NF operation, could be related to high fouling events likely caused by elevated levels of particulate/colloid-like material in the biofilter effluents. The fluorescence EEM-based PCA approach presented here is sensitive enough to be used at low organic carbon levels and has potential as an early detection method to identify high fouling events, allowing appropriate operational countermeasures to be taken.


Water Research | 2009

Modification of poly(vinylidene fluoride) ultrafiltration membranes with poly(vinyl alcohol) for fouling control in drinking water treatment

Jennifer Runhong Du; Sigrid Peldszus; Peter M. Huck; Xianshe Feng

A commercial poly(vinylidene fluoride) flat sheet membrane was modified by surface coating with a dilute poly(vinyl alcohol) (PVA) aqueous solution followed by solid-vapor interfacial crosslinking. The resulting PVA layer increased membrane smoothness and hydrophilicity and resulted in comparable pure water permeation between the modified and unmodified membranes. Fouling tests using a 5 mg/L protein solution showed that a short period of coating and crosslinking improved the anti-fouling performance. After 18 h ultrafiltration of a surface water with a TOC of approximately 7 mg C/L, the flux of the modified membrane was twice as high as that of the unmodified membrane. The improved fouling resistance of the modified membrane was related to the membrane physiochemical properties, which were confirmed by pure water permeation, X-ray photoelectron spectroscopy, and contact angle, zeta potential and roughness measurements.


Water Research | 2011

Reversible and irreversible low-pressure membrane foulants in drinking water treatment: Identification by principal component analysis of fluorescence EEM and mitigation by biofiltration pretreatment

Sigrid Peldszus; Cynthia Hallé; Ramila H. Peiris; Mohamed A. Hamouda; Xiaohui Jin; Raymond L. Legge; Hector Budman; Christine Moresoli; Peter M. Huck

With the increased use of membranes in drinking water treatment, fouling--particularly the hydraulically irreversible type--remains the main operating issue that hinders performance and increases operational costs. The main challenge in assessing fouling potential of feed water is to accurately detect and quantify feed water constituents responsible for membrane fouling. Utilizing fluorescence excitation-emission matrices (EEM), protein-like substances, humic and fulvic acids, and particulate/colloidal matter can be detected with high sensitivity in surface waters. The application of principal component analysis to fluorescence EEMs allowed estimation of the impact of surface water constituents on reversible and irreversible membrane fouling. This technique was applied to experimental data from a two year bench-scale study that included thirteen experiments investigating the fouling potential of Grand River water (Ontario, Canada) and the effect of biofiltration pre-treatment on the level of foulants during ultrafiltration (UF). Results showed that, although the content of protein-like substances in this membrane feed water (=biofiltered natural water) was much lower than commonly found in wastewater applications, the content of protein-like substances was still highly correlated with irreversible fouling of the UF membrane. In addition, there is evidence that protein-like substances and particulate/colloidal matter formed a combined fouling layer, which contributed to both reversible and irreversible fouling. It is suggested that fouling transitions from a reversible to an irreversible regime depending on feed composition and operating time. Direct biofiltration without prior coagulant addition reduced the protein-like content of the membrane feed water which in turn reduced the irreversible fouling potential for UF membranes. Biofilters also decreased reversible fouling, and for both types of fouling higher biofilter contact times were beneficial.


Water Research | 1988

A review of the use of XAD resins to concentrate organic compounds in water

S.A. Daignault; D.K. Noot; D.T. Williams; Peter M. Huck

Abstract The current and historical literature pertaining to the use of Amberlite® XAD resins for isolating and concentrating organic compounds from water has been reviewed. The focus is on XAD-2 and XAD-4 resins and their use in concentrating organics from drinking water for mutagenicity studies. Factors affecting solute adsorption/desorption are addressed, as are resin cleaning and regeneration methods. The identification and elimination of resin artifacts are discussed as well as the possible mutagenic potential of these artifacts or of their disinfection by-products, principally resulting from their reaction with chlorine.


Water Research | 2001

Measurement of biomass activity in drinking water biofilters using a respirometric method

Daniel Urfer; Peter M. Huck

A simple respirometric method was developed and applied for the measurement of biomass activity in bench-scale drinking water biofilters. The results obtained with the new method, i.e. biomass respiration potential (BRP), indicated a high sensitivity allowing the quantification of the activity of low amounts of biomass. The analysis of duplicate samples showed a reasonable reproducibility, i.e. average coefficient of variation of 14% (n = 19). The calculation of the ratio between biomass activity and the amount of viable biomass (phospholipid) at different filter depths indicated a substantial increase of this ratio with filter depth. This indicated an increased biomass activity per unit amount of viable biomass deeper in the biofilters, where biofilm thickness is low. The comparison of the filter profiles of biomass activity and dissolved biodegradable organic matter (BOM), expressed as theoretical oxygen demand, showed a high correlation between these profiles. Consequently, BRP results appear to be good indicators of the BOM removal capacity of the filter biomass. Therefore, BRP results can potentially be used in certain cases instead of BOM measurements for the assessment of the BOM removal capacity of drinking water biofilters, operated under different conditions. This is important because of the relative complexity of the measurements of BOM surrogates, e.g. assimilable organic carbon and biodegradable dissolved organic carbon, and BOM components.


Water Research | 2012

Reaction kinetics of selected micropollutants in ozonation and advanced oxidation processes

Xiaohui Jin; Sigrid Peldszus; Peter M. Huck

Second-order reaction rate constants of micropollutants with ozone (k(O3)) and hydroxyl radicals (k(OH)) are essential for evaluating their removal efficiencies from water during ozonation and advanced oxidation processes. Kinetic data are unavailable for many of the emerging micropollutants. Twenty-four micropollutants with very diverse structures and applications including endocrine disrupting compounds, pharmaceuticals, and personal care products were selected, and their k(O3) and k(OH) values were determined using bench-scale reactors (at pH 7 and T = 20 °C). Reactions with molecular ozone are highly selective as indicated by their k(O3) values ranging from 10(-2)-10(7) M(-1) s(-1). The general trend of ozone reactivity can be explained by micropollutant structures in conjunction with the electrophilic nature of ozone reactions. All of the studied compounds are highly reactive with hydroxyl radicals as shown by their high k(OH) values (10(8)-10(10) M(-1) s(-1)) even though they are structurally very diverse. For compounds with a low reactivity toward ozone, hydroxyl radical based treatment such as O(3)/H(2)O(2) or UV/H(2)O(2) is a viable alternative. This study contributed to filling the data gap pertaining kinetic data of organic micropollutants while confirming results reported in the literature where available.


Journal of Applied Microbiology | 2010

The occurrence of Campylobacter in river water and waterfowl within a watershed in southern Ontario, Canada.

M.I. Van Dyke; V.K. Morton; N.L. McLellan; Peter M. Huck

Aims:  Quantitative PCR and a culture method were used to investigate Campylobacter occurrence over 3 years in a watershed located in southern Ontario, Canada that is used as a source of drinking water.


Water Research | 2003

Inactivation and potential repair of Cryptosporidium parvum following low- and medium-pressure ultraviolet irradiation

J.L Zimmer; Robin M Slawson; Peter M. Huck

This study investigated the level of inactivation and the potential for Cryptosporidium parvum to repair following low doses (1 and 3mJ/cm(2)) of ultraviolet (UV) irradiation from both low- and medium-pressure UV lamps. Cryptosporidium parvum oocysts suspended in phosphate buffered saline were exposed to UV using a bench-scale collimated beam apparatus. Oocyst suspensions were incubated at 5 degrees C or 25 degrees C under light and dark conditions up to 120 h (5 days) following exposure to UV irradiation, to examine photoreactivation and dark repair potential, respectively. Cryptosporidium parvum infectivity was determined throughout the incubation period using an HCT-8 cell culture and an antibody staining procedure for detection. No detectable evidence of repair was observed after incubation under light or dark conditions following either LP or MP UV lamp irradiation.


Water Research | 2010

Biopolymer fouling in dead-end ultrafiltration of treated domestic wastewater

Xing Zheng; Mathias Ernst; Peter M. Huck; Martin Jekel

Ultrafiltration (UF) is considered as a suitable treatment process after conventional wastewater treatment to produce reuse water. Nevertheless, fouling affects the performance of UF to a large extent. As biopolymers (mostly macro polysaccharide-like and protein-like molecules) have been identified as major foulants affecting the filterability of water in dead-end UF, the present study focuses on investigating the reversibility of biopolymer fouling occurring at different biopolymer mass loads to the membrane and under different compression conditions. UF-membrane stirred cell tests using five cycles show that filtering treated domestic wastewater leads to a significant permeability reduction due to the accumulation of biopolymers on the membrane surface and/or in the membrane pores. Although they can be removed by hydraulic backwashing, an increased mass load of biopolymers reduces the removal efficiency. This correlation was verified using a UF pilot plant filtering treated wastewater (secondary effluent or slow sand filtrate). The effect of biopolymer fouling layer deformation on its reversibility was studied using multi-cycle membrane filtration tests under different filtration pressures. The results showed that higher filtration pressures result in more compact biopolymer fouling which is more difficult to be hydraulically backwashed. This phenomenon was also confirmed by pilot-scale UF experiments.

Collaboration


Dive into the Peter M. Huck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robin M. Slawson

Wilfrid Laurier University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bradley M. Coffey

Metropolitan Water District of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Jekel

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge