Sigrid Peldszus
University of Waterloo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sigrid Peldszus.
Water Research | 2008
Zirui Yu; Sigrid Peldszus; Peter M. Huck
The adsorption of two representative pharmaceutically active compounds (PhACs) (naproxen and carbamazepine) and one endocrine disrupting compound (nonylphenol) were evaluated on two types of activated carbon. When determining their isotherms at environmentally relevant concentration levels, it was found that at this low concentration range (10-800 ng/L), removals of the target compounds were contrary to expectations based on their hydrophobicity. Nonylphenol (log K(ow) 5.8) was most poorly adsorbed, whereas carbamazepine (log K(ow) 2.45) was most adsorbable. Nonylphenol Freundlich isotherms at this very low concentration range had a much higher 1/n compared to isotherms at much higher concentrations. This indicates that extrapolation from an isotherm obtained at a high concentration range to predict the adsorption of nonylphenol at a concentration well below the range of the original isotherm, leads to a substantial overestimation of its removals. Comparison of isotherms for the target compounds to those for other conventional micropollutants suggested that naproxen and carbamazepine could be effectively removed by applying the same dosage utilized to remove odorous compounds (geosmin and MIB) at very low concentrations. The impact of competitive adsorption by background natural organic matter (NOM) on the adsorption of the target compounds was quantified by using the ideal adsorbed solution theory (IAST) in combination with the equivalent background compound (EBC) approach. The fulfilment of the requirements for applying the simplified IAST-EBC model, which leads to the conclusion that the percentage removal of the target compounds at a given carbon dosage is independent of the initial contaminant concentration, was confirmed for the situation examined in the paper. On this basis it is suggested that the estimated minimum carbon usage rates (CURs) to achieve 90% removal of these emerging contaminants would be valid at concentrations of less than 500 ng/L in natural water.
Water Research | 2010
Ramila H. Peiris; Cynthia Hallé; Hector Budman; Christine Moresoli; Sigrid Peldszus; Peter M. Huck; Raymond L. Legge
The identification of key foulants and the provision of early warning of high fouling events for drinking water treatment membrane processes is crucial for the development of effective countermeasures to membrane fouling, such as pretreatment. Principal foulants include organic, colloidal and particulate matter present in the membrane feed water. In this research, principal component analysis (PCA) of fluorescence excitation-emission matrices (EEMs) was identified as a viable tool for monitoring the performance of pre-treatment stages (in this case biological filtration), as well as ultrafiltration (UF) and nanofiltration (NF) membrane systems. In addition, fluorescence EEM-based principal component (PC) score plots, generated using the fluorescence EEMs obtained after just 1hour of UF or NF operation, could be related to high fouling events likely caused by elevated levels of particulate/colloid-like material in the biofilter effluents. The fluorescence EEM-based PCA approach presented here is sensitive enough to be used at low organic carbon levels and has potential as an early detection method to identify high fouling events, allowing appropriate operational countermeasures to be taken.
Water Research | 2009
Jennifer Runhong Du; Sigrid Peldszus; Peter M. Huck; Xianshe Feng
A commercial poly(vinylidene fluoride) flat sheet membrane was modified by surface coating with a dilute poly(vinyl alcohol) (PVA) aqueous solution followed by solid-vapor interfacial crosslinking. The resulting PVA layer increased membrane smoothness and hydrophilicity and resulted in comparable pure water permeation between the modified and unmodified membranes. Fouling tests using a 5 mg/L protein solution showed that a short period of coating and crosslinking improved the anti-fouling performance. After 18 h ultrafiltration of a surface water with a TOC of approximately 7 mg C/L, the flux of the modified membrane was twice as high as that of the unmodified membrane. The improved fouling resistance of the modified membrane was related to the membrane physiochemical properties, which were confirmed by pure water permeation, X-ray photoelectron spectroscopy, and contact angle, zeta potential and roughness measurements.
Water Research | 2014
Mohammad Feisal Rahman; Sigrid Peldszus; William B. Anderson
This article reviews perfluoroalkyl and polyfluoroalkyl substance (PFAS) characteristics, their occurrence in surface water, and their fate in drinking water treatment processes. PFASs have been detected globally in the aquatic environment including drinking water at trace concentrations and due, in part, to their persistence in human tissue some are being investigated for regulation. They are aliphatic compounds containing saturated carbon-fluorine bonds and are resistant to chemical, physical, and biological degradation. Functional groups, carbon chain length, and hydrophilicity/hydrophobicity are some of the important structural properties of PFASs that affect their fate during drinking water treatment. Full-scale drinking water treatment plant occurrence data indicate that PFASs, if present in raw water, are not substantially removed by most drinking water treatment processes including coagulation, flocculation, sedimentation, filtration, biofiltration, oxidation (chlorination, ozonation, AOPs), UV irradiation, and low pressure membranes. Early observations suggest that activated carbon adsorption, ion exchange, and high pressure membrane filtration may be effective in controlling these contaminants. However, branched isomers and the increasingly used shorter chain PFAS replacement products may be problematic as it pertains to the accurate assessment of PFAS behaviour through drinking water treatment processes since only limited information is available for these PFASs.
Water Research | 2011
Sigrid Peldszus; Cynthia Hallé; Ramila H. Peiris; Mohamed A. Hamouda; Xiaohui Jin; Raymond L. Legge; Hector Budman; Christine Moresoli; Peter M. Huck
With the increased use of membranes in drinking water treatment, fouling--particularly the hydraulically irreversible type--remains the main operating issue that hinders performance and increases operational costs. The main challenge in assessing fouling potential of feed water is to accurately detect and quantify feed water constituents responsible for membrane fouling. Utilizing fluorescence excitation-emission matrices (EEM), protein-like substances, humic and fulvic acids, and particulate/colloidal matter can be detected with high sensitivity in surface waters. The application of principal component analysis to fluorescence EEMs allowed estimation of the impact of surface water constituents on reversible and irreversible membrane fouling. This technique was applied to experimental data from a two year bench-scale study that included thirteen experiments investigating the fouling potential of Grand River water (Ontario, Canada) and the effect of biofiltration pre-treatment on the level of foulants during ultrafiltration (UF). Results showed that, although the content of protein-like substances in this membrane feed water (=biofiltered natural water) was much lower than commonly found in wastewater applications, the content of protein-like substances was still highly correlated with irreversible fouling of the UF membrane. In addition, there is evidence that protein-like substances and particulate/colloidal matter formed a combined fouling layer, which contributed to both reversible and irreversible fouling. It is suggested that fouling transitions from a reversible to an irreversible regime depending on feed composition and operating time. Direct biofiltration without prior coagulant addition reduced the protein-like content of the membrane feed water which in turn reduced the irreversible fouling potential for UF membranes. Biofilters also decreased reversible fouling, and for both types of fouling higher biofilter contact times were beneficial.
Water Research | 2012
Xiaohui Jin; Sigrid Peldszus; Peter M. Huck
Second-order reaction rate constants of micropollutants with ozone (k(O3)) and hydroxyl radicals (k(OH)) are essential for evaluating their removal efficiencies from water during ozonation and advanced oxidation processes. Kinetic data are unavailable for many of the emerging micropollutants. Twenty-four micropollutants with very diverse structures and applications including endocrine disrupting compounds, pharmaceuticals, and personal care products were selected, and their k(O3) and k(OH) values were determined using bench-scale reactors (at pH 7 and T = 20 °C). Reactions with molecular ozone are highly selective as indicated by their k(O3) values ranging from 10(-2)-10(7) M(-1) s(-1). The general trend of ozone reactivity can be explained by micropollutant structures in conjunction with the electrophilic nature of ozone reactions. All of the studied compounds are highly reactive with hydroxyl radicals as shown by their high k(OH) values (10(8)-10(10) M(-1) s(-1)) even though they are structurally very diverse. For compounds with a low reactivity toward ozone, hydroxyl radical based treatment such as O(3)/H(2)O(2) or UV/H(2)O(2) is a viable alternative. This study contributed to filling the data gap pertaining kinetic data of organic micropollutants while confirming results reported in the literature where available.
Water Research | 2014
Fei Chen; Sigrid Peldszus; Ramila H. Peiris; Aki Sebastian Ruhl; R. Mehrez; Martin Jekel; Raymond L. Legge; Peter M. Huck
A pilot-scale investigation of the performance of biofiltration as a pre-treatment to ultrafiltration for drinking water treatment was conducted between 2008 and 2010. The objective of this study was to further understand the fouling behaviour of ultrafiltration at pilot scale and assess the utility of different foulant monitoring tools. Various fractions of natural organic matter (NOM) and colloidal/particulate matter of raw water, biofilter effluents, and membrane permeate were characterized by employing two advanced NOM characterization techniques: liquid chromatography - organic carbon detection (LC-OCD) and fluorescence excitation-emission matrices (FEEM) combined with principal component analysis (PCA). A framework of fouling rate quantification and classification was also developed and utilized in this study. In cases such as the present one where raw water quality and therefore fouling potential vary substantially, such classification can be considered essential for proper data interpretation. The individual and combined contributions of various NOM fractions and colloidal/particulate matter to hydraulically reversible and irreversible fouling were investigated using various multivariate statistical analysis techniques. Protein-like substances and biopolymers were identified as major contributors to both reversible and irreversible fouling, whereas colloidal/particulate matter can alleviate the extent of irreversible fouling. Humic-like substances contributed little to either reversible or irreversible fouling at low level fouling rates. The complementary nature of FEEM-PCA and LC-OCD for assessing the fouling potential of complex water matrices was also illustrated by this pilot-scale study.
Journal of Chromatography A | 1996
Sigrid Peldszus; Peter M. Huck; Susan A. Andrews
A fast and reliable ion chromatography method has been developed and applied to study the formation and consumption of organic acid ozonation by-products in a drinking water treatment plant. Water samples are injected directly into the ion chromatograph using a large sample loop (740 mu l) without any sample preparation step other than possibly filtration. Organic and inorganic anions are determined by separation on a high-capacity anion-exchange column followed by conductivity detection. The average recovery for the organic acids investigated (beta-hydroxybutyric, acetic, glycolic, butyric, formic, alpha-ketobutyric and pyruvic acid) ranged from 96 to 105%, and their method detection limits ranged from 1 to 5 mu g/l. When applied to samples taken from a drinking water treatment plant, the method proved to be reliable.
Journal of Chromatography A | 1998
Sigrid Peldszus; Peter M. Huck; Susan A. Andrews
Abstract In this research, a recently developed ion chromatography method for organic acids was expanded to include oxalate. A major challenge was that oxalate elutes between inorganic anions such as sulfate, phosphate, bromide and nitrate, which are often present in much higher concentrations than oxalate. Optimization of the previously reported method made it possible to determine oxalate in these matrices. However, for those samples in which higher inorganic anion concentrations caused the oxalate peak to be obscured, a “heart-cut” column switching technique was used as an alternative. The method detection limit for oxalate was 9 μg/l with the direct approach and 6 μg/l for the “heart-cut” technique. These modifications represent a valuable supplement to a recently developed method for monitoring ozonation by-products in drinking water.
Science of The Total Environment | 2012
Xiaohui Jin; Sigrid Peldszus
Micropollutants remain of concern in drinking water, and there is a broad interest in the ability of different treatment processes to remove these compounds. To gain a better understanding of treatment effectiveness for structurally diverse compounds and to be cost effective, it is necessary to select a small set of representative micropollutants for experimental studies. Unlike other approaches to-date, in this research micropollutants were systematically selected based solely on their physico-chemical and structural properties that are important in individual water treatment processes. This was accomplished by linking underlying principles of treatment processes such as coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration to compound characteristics and corresponding molecular descriptors. A systematic statistical approach not commonly used in water treatment was then applied to a compound pool of 182 micropollutants (identified from the literature) and their relevant calculated molecular descriptors. Principal component analysis (PCA) was used to summarize the information residing in this large dataset. D-optimal onion design was then applied to the PCA results to select structurally representative compounds that could be used in experimental treatment studies. To demonstrate the applicability and flexibility of this selection approach, two sets of 22 representative micropollutants are presented. Compounds in the first set are representative when studying a range of water treatment processes (coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration), whereas the second set shows representative compounds for ozonation and advanced oxidation studies. Overall, selected micropollutants in both lists are structurally diverse, have wide-ranging physico-chemical properties and cover a large spectrum of applications. The systematic compound selection approach presented here can also be adjusted to fit individual research needs with respect to type of micropollutants, treatment processes and number of compounds selected.