Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter M. Kasson is active.

Publication


Featured researches published by Peter M. Kasson.


Bioinformatics | 2013

GROMACS 4.5

Sander Pronk; Szilárd Páll; Roland Schulz; Per Larsson; Pär Bjelkmar; Rossen Apostolov; Michael R. Shirts; Jeremy C. Smith; Peter M. Kasson; David van der Spoel; Berk Hess; Erik Lindahl

MOTIVATION Molecular simulation has historically been a low-throughput technique, but faster computers and increasing amounts of genomic and structural data are changing this by enabling large-scale automated simulation of, for instance, many conformers or mutants of biomolecules with or without a range of ligands. At the same time, advances in performance and scaling now make it possible to model complex biomolecular interaction and function in a manner directly testable by experiment. These applications share a need for fast and efficient software that can be deployed on massive scale in clusters, web servers, distributed computing or cloud resources. RESULTS Here, we present a range of new simulation algorithms and features developed during the past 4 years, leading up to the GROMACS 4.5 software package. The software now automatically handles wide classes of biomolecules, such as proteins, nucleic acids and lipids, and comes with all commonly used force fields for these molecules built-in. GROMACS supports several implicit solvent models, as well as new free-energy algorithms, and the software now uses multithreading for efficient parallelization even on low-end systems, including windows-based workstations. Together with hand-tuned assembly kernels and state-of-the-art parallelization, this provides extremely high performance and cost efficiency for high-throughput as well as massively parallel simulations. AVAILABILITY GROMACS is an open source and free software available from http://www.gromacs.org. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Immunity | 1998

Formation of a Highly Peptide-Receptive State of Class II MHC

Joshua D. Rabinowitz; Marija Vrljic; Peter M. Kasson; Michael N. Liang; Robert Busch; J. Jay Boniface; Mark M. Davis; Harden M. McConnell

Peptide binding to class II MHC proteins occurs in acidic endosomal compartments following dissociation of class II-associated invariant chain peptide (CLIP). Based on peptide binding both to empty class II MHC and to molecules preloaded with peptides including CLIP, we find evidence for two isomeric forms of empty MHC. One (inactive) does not bind peptide. The other (active) binds peptide rapidly, with k(on) 1000-fold faster than previous estimates. The active isomer can be formed either by slow isomerization of the inactive molecule or by dissociation of a preformed peptide/MHC complex. In the absence of peptide, the active isomer is unstable, rapidly converting to the inactive isomer. These results demonstrate that fast peptide binding is an inherent property of one isomer of empty class II MHC. Dissociation of peptides such as CLIP yields this transient, peptide-receptive isomer.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Ensemble molecular dynamics yields submillisecond kinetics and intermediates of membrane fusion

Peter M. Kasson; Nicholas W. Kelley; Nina Singhal; Marija Vrljic; Axel T. Brunger; Vijay S. Pande

Lipid membrane fusion is critical to cellular transport and signaling processes such as constitutive secretion, neurotransmitter release, and infection by enveloped viruses. Here, we introduce a powerful computational methodology for simulating membrane fusion from a starting configuration designed to approximate activated prefusion assemblies from neuronal and viral fusion, producing results on a time scale and degree of mechanistic detail not previously possible to our knowledge. We use an approach to the long time scale simulation of fusion by constructing a Markovian state model with large-scale distributed computing, yielding an understanding of fusion mechanisms on time scales previously impossible to simulate to our knowledge. Our simulation data suggest a branched pathway for fusion, in which a common stalk-like intermediate can either rapidly form a fusion pore or remain in a metastable hemifused state that slowly forms fully fused vesicles. This branched reaction pathway provides a mechanistic explanation both for the biphasic fusion kinetics and the stable hemifused intermediates previously observed experimentally. Our distributed computing and Markovian state model approaches provide sufficient sampling to detect rare transitions, a systematic process for analyzing reaction pathways, and the ability to develop quantitative approximations of reaction kinetics for fusion.


PLOS Computational Biology | 2010

Atomic-Resolution Simulations Predict a Transition State for Vesicle Fusion Defined by Contact of a Few Lipid Tails

Peter M. Kasson; Erik Lindahl; Vijay S. Pande

Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the membrane changes they induce remain unknown. Here, we use many atomic-resolution simulations of vesicle fusion to examine the molecular mechanisms for fusion in detail. We employ committor analysis for these million-atom vesicle fusion simulations to identify a transition state for fusion stalk formation. In our simulations, this transition state occurs when the bulk properties of each lipid bilayer remain in a lamellar state but a few hydrophobic tails bulge into the hydrophilic interface layer and make contact to nucleate a stalk. Additional simulations of influenza fusion peptides in lipid bilayers show that the peptides promote similar local protrusion of lipid tails. Comparing these two sets of simulations, we obtain a common set of structural changes between the transition state for stalk formation and the local environment of peptides known to catalyze fusion. Our results thus suggest that the specific molecular properties of individual lipids are highly important to vesicle fusion and yield an explicit structural model that could help explain the mechanism of catalysis by fusion proteins.


Bioinformatics | 2007

Persistent voids

Peter M. Kasson; Afra Zomorodian; Sanghyun Park; Nina Singhal; Leonidas J. Guibas; Vijay S. Pande

MOTIVATION Membrane fusion constitutes a key stage in cellular processes such as synaptic neurotransmission and infection by enveloped viruses. Current experimental assays for fusion have thus far been unable to resolve early fusion events in fine structural detail. We have previously used molecular dynamics simulations to develop mechanistic models of fusion by small lipid vesicles. Here, we introduce a novel structural measurement of vesicle topology and fusion geometry: persistent voids. RESULTS Persistent voids calculations enable systematic measurement of structural changes in vesicle fusion by assessing fusion stalk widths. They also constitute a generally applicable technique for assessing lipid topological change. We use persistent voids to compute dynamic relationships between hemifusion neck widening and formation of a full fusion pore in our simulation data. We predict that a tightly coordinated process of hemifusion neck expansion and pore formation is responsible for the rapid vesicle fusion mechanism, while isolated enlargement of the hemifusion diaphragm leads to the formation of a metastable hemifused intermediate. These findings suggest that rapid fusion between small vesicles proceeds via a small hemifusion diaphragm rather than a fully expanded one. AVAILABILITY Software available upon request pending public release. SUPPLEMENTARY INFORMATION Supplementary data are available on Bioinformatics online.


PLOS Computational Biology | 2013

Lipid Tail Protrusion in Simulations Predicts Fusogenic Activity of Influenza Fusion Peptide Mutants and Conformational Models

Per Larsson; Peter M. Kasson

Fusion peptides from influenza hemagglutinin act on membranes to promote membrane fusion, but the mechanism by which they do so remains unknown. Recent theoretical work has suggested that contact of protruding lipid tails may be an important feature of the transition state for membrane fusion. If this is so, then influenza fusion peptides would be expected to promote tail protrusion in proportion to the ability of the corresponding full-length hemagglutinin to drive lipid mixing in fusion assays. We have performed molecular dynamics simulations of influenza fusion peptides in lipid bilayers, comparing the X-31 influenza strain against a series of N-terminal mutants. As hypothesized, the probability of lipid tail protrusion correlates well with the lipid mixing rate induced by each mutant. This supports the conclusion that tail protrusion is important to the transition state for fusion. Furthermore, it suggests that tail protrusion can be used to examine how fusion peptides might interact with membranes to promote fusion. Previous models for native influenza fusion peptide structure in membranes include a kinked helix, a straight helix, and a helical hairpin. Our simulations visit each of these conformations. Thus, the free energy differences between each are likely low enough that specifics of the membrane environment and peptide construct may be sufficient to modulate the equilibrium between them. However, the kinked helix promotes lipid tail protrusion in our simulations much more strongly than the other two structures. We therefore predict that the kinked helix is the most fusogenic of these three conformations.


Journal of the American Chemical Society | 2011

Water Ordering at Membrane Interfaces Controls Fusion Dynamics

Peter M. Kasson; Erik Lindahl; Vijay S. Pande

Membrane interfaces are critical to many cellular functions, yet the vast array of molecular components involved make the fundamental physics of interaction difficult to define. Water has been shown to play an important role in the dynamics of small biological systems, for example when trapped in hydrophobic regions, but the molecular details of water have generally been thought dispensable when considering large membrane interfaces. Nevertheless, spectroscopic data indicate that water has distinct, ordered behavior near membrane surfaces. While coarse-grained simulations have achieved success recently in aiding understanding the dynamics of membrane assemblies, it is natural to ask, does the missing chemical nature of water play an important role? We have therefore performed atomic-resolution simulations of vesicle fusion to understand the role of chemical detail, particularly the molecular structure of water, in membrane fusion and at membrane interfaces more generally. These membrane interfaces present a form of hydrophilic confinement, yielding surprising, non-bulk-like water behavior.


Journal of Virology | 2014

Ebolavirus Entry Requires a Compact Hydrophobic Fist at the Tip of the Fusion Loop

Sonia M. Gregory; Per Larsson; Elizabeth A. Nelson; Peter M. Kasson; Judith M. White; Lukas K. Tamm

ABSTRACT Ebolavirus is an enveloped virus causing severe hemorrhagic fever. Its surface glycoproteins undergo proteolytic cleavage and rearrangements to permit membrane fusion and cell entry. Here we focus on the glycoproteins internal fusion loop (FL), critical for low-pH-triggered fusion in the endosome. Alanine mutations at L529 and I544 and particularly the L529 I544 double mutation compromised viral entry and fusion. The nuclear magnetic resonance (NMR) structures of the I544A and L529A I544A mutants in lipid environments showed significant disruption of a three-residue scaffold that is required for the formation of a consolidated fusogenic hydrophobic surface at the tip of the FL. Biophysical experiments and molecular simulation revealed the position of the wild-type (WT) FL in membranes and showed the inability of the inactive double mutant to reach this position. Consolidation of hydrophobic residues at the tip of FLs may be a common requirement for internal FLs of class I, II, and III fusion proteins. IMPORTANCE Many class I, II, and III viral fusion proteins bear fusion loops for target membrane insertion and fusion. We determined structures of the Ebolavirus fusion loop and found residues critical for forming a consolidated hydrophobic surface, membrane insertion, and viral entry.


eLife | 2014

Improving pandemic influenza risk assessment

Colin A. Russell; Peter M. Kasson; Ruben O. Donis; Steven Riley; John Dunbar; Andrew Rambaut; Jason Asher; Stephen A. Burke; C. Todd Davis; Rebecca Garten; S. Gnanakaran; Simon I. Hay; Sander Herfst; Nicola S. Lewis; James O. Lloyd-Smith; Catherine A. Macken; Sebastian Maurer-Stroh; Elizabeth Neuhaus; Colin R. Parrish; Kim M. Pepin; Samuel S. Shepard; David L. Smith; David L. Suarez; Susan C. Trock; Marc Alain Widdowson; Dylan B. George; Marc Lipsitch; Jesse D. Bloom

Assessing the pandemic risk posed by specific non-human influenza A viruses is an important goal in public health research. As influenza virus genome sequencing becomes cheaper, faster, and more readily available, the ability to predict pandemic potential from sequence data could transform pandemic influenza risk assessment capabilities. However, the complexities of the relationships between virus genotype and phenotype make such predictions extremely difficult. The integration of experimental work, computational tool development, and analysis of evolutionary pathways, together with refinements to influenza surveillance, has the potential to transform our ability to assess the risks posed to humans by non-human influenza viruses and lead to improved pandemic preparedness and response. DOI: http://dx.doi.org/10.7554/eLife.03883.001


Biophysical Journal | 2008

Structural Basis for Influence of Viral Glycans on Ligand Binding by Influenza Hemagglutinin

Peter M. Kasson; Vijay S. Pande

Binding of cell surface glycans by influenza hemagglutinin controls viral attachment and infection of host cells. This binding is a three-way interaction between viral proteins, host glycans, and viral glycans; many structural details of this interaction have been difficult to resolve. Here, we use a series of 100-ns molecular dynamics simulations to further analyze available crystallographic data on hemagglutinin-ligand interactions. Based on our simulations, we predict that the viral glycans contact the host glycans within 1-2 residues of the ligand-binding site. We also predict that the glycan-glycan interactions contain both stabilizing and destabilizing components. These predictions suggest a structural means to explain why changes to viral glycosylation alter the efficiency and selectivity of ligand binding. We also predict that the proximity of these interactions to the ligand-binding pocket will impact the binding affinity of small glycomimetic ligands analogous to the influenza neuraminidase inhibitors currently in clinical use.

Collaboration


Dive into the Peter M. Kasson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge