Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert J. Rawle is active.

Publication


Featured researches published by Robert J. Rawle.


PLOS ONE | 2014

Choose your label wisely: water-soluble fluorophores often interact with lipid bilayers.

Laura D. Hughes; Robert J. Rawle; Steven G. Boxer

Water-soluble organic fluorophores are widely used as labels in biological systems. However, in many cases these fluorophores can interact strongly with lipid bilayers, influencing the interaction of the target with the bilayer and/or leading to misleading fluorescent signals. Here, we quantify the interaction of 32 common water-soluble dyes with model lipid bilayers to serve as an additional criterion when selecting a dye label.


Langmuir | 2010

Covalent attachment of lipid vesicles to a fluid-supported bilayer allows observation of DNA-mediated vesicle interactions.

Bettina van Lengerich; Robert J. Rawle; Steven G. Boxer

Specific membrane interactions such as lipid vesicle docking and fusion can be mediated by synthetic DNA-lipid conjugates as a model for the protein-driven processes that are ubiquitous in biological systems. Here we present a method of tethering vesicles to a supported lipid bilayer that allows the simultaneous deposition of cognate vesicle partners displaying complementary DNA, resulting in well-mixed populations of tethered vesicles that are laterally mobile. Vesicles are covalently attached to a supporting lipid bilayer using a DNA-templated click reaction; then DNA-mediated interactions between tethered vesicles are triggered by spiking the salt concentration. These interactions, such as docking and fusion, can then be observed for individual vesicles as they collide on the surface. The architecture of this new system also permits control over the number of lipid anchors that tether the vesicle to the supporting bilayer. The diffusion coefficient of tethered vesicles anchored by two lipids is approximately 1.6-fold slower than that of vesicles anchored only with a single lipid, consistent with a simple physical model.


Biophysical Journal | 2011

Vesicle Fusion Observed by Content Transfer across a Tethered Lipid Bilayer

Robert J. Rawle; Bettina van Lengerich; Minsub Chung; Poul Martin Bendix; Steven G. Boxer

Synaptic transmission is achieved by exocytosis of small, synaptic vesicles containing neurotransmitters across the plasma membrane. Here, we use a DNA-tethered freestanding bilayer as a target architecture that allows observation of content transfer of individual vesicles across the tethered planar bilayer. Tethering and fusion are mediated by hybridization of complementary DNA-lipid conjugates inserted into the two membranes, and content transfer is monitored by the dequenching of an aqueous content dye. By analyzing the diffusion profile of the aqueous dye after vesicle fusion, we are able to distinguish content transfer across the tethered bilayer patch from vesicle leakage above the patch.


Biophysical Journal | 2013

Individual Vesicle Fusion Events Mediated by Lipid-Anchored DNA

Bettina van Lengerich; Robert J. Rawle; Poul Martin Bendix; Steven G. Boxer

Membrane fusion consists of a complex rearrangement of lipids and proteins that results in the merger of two lipid bilayers. We have developed a model system that employs synthetic DNA-lipid conjugates as a surrogate for the membrane proteins involved in the biological fusion reaction. We previously showed that complementary DNA-lipids, inserted into small unilamellar vesicles, can mediate membrane fusion in bulk. Here, we use a model membrane architecture developed in our lab to directly observe single-vesicle fusion events using fluorescence microscopy. In this system, a planar tethered membrane patch serves as the target membrane for incoming vesicles. This allows us to quantify the kinetics and characteristics of individual fusion events from the perspective of the lipids or the DNA-lipids involved in the process. We find that the fusion pathways are heterogeneous, with an arrested hemi-fusion state predominating, and we quantitate the outcome and rate of fusion events to construct a mechanistic model of DNA-mediated vesicle fusion. The waiting times between docking and fusion are distributed exponentially, suggesting that fusion occurs in a single step. Our analysis indicates that when two lipid bilayers are brought into close proximity, fusion occurs spontaneously, with little or no dependence on the number of DNA hybrids formed.


Biomacromolecules | 2008

A Quartz Crystal Microbalance Study of Polycation-Supported Single and Double Stranded DNA Surfaces

Amanda Y. Yang; Robert J. Rawle; Cynthia R. D. Selassie; Malkiat S. Johal

A quartz crystal microbalance with dissipation monitoring (QCM-D) was used to investigate the properties and formation of a genomic mammalian DNA surface on a polycationic poly(ethylenimine) (PEI) film. We show that both single- and double-stranded DNA films can be deposited on the PEI surface by modulating the DNA adsorption time. The two distinct DNA surfaces can be confirmed by their interactions with urea, a common DNA denaturant, and ethidium bromide, a common DNA intercalator, both of which lead to characteristic changes in the QCM-D frequency and dissipation. The hybridization process between surface-bound single-stranded DNA to complementary strands in solution can be resolved in real-time. Moreover, we have also investigated the effects of incorporating NaCl in the various PEI-DNA assemblies and have shown that higher ionic strengths lead to greater DNA adsorption to the PEI surface. An increase in the QCM-D resonant frequency and a decrease in dissipation occur when these assemblies are rinsed with salt-free water. We interpret these changes as a loss of counterions from the film and an increase in intrinsic ion-pair complexation, leading to a more rigid PEI-DNA assembly. Varying the salt content in the DNA film can be used to control the film thickness and morphology.


Scientific Reports | 2016

Influenza viral membrane fusion is sensitive to sterol concentration but surprisingly robust to sterol chemical identity

Katarzyna E. Zawada; Dominik Wrona; Robert J. Rawle; Peter M. Kasson

Influenza virions are enriched in cholesterol relative to the plasma membrane from which they bud. Previous work has shown that fusion between influenza virus and synthetic liposomes is sensitive to the amount of cholesterol in either the virus or the target membrane. Here, we test the chemical properties of cholesterol required to promote influenza fusion by replacing cholesterol with other sterols and assaying viral fusion kinetics. We find that influenza fusion with liposomes is surprisingly robust to sterol chemical identity, showing no significant dependence on sterol identity in target membranes for any of the sterols tested. In the viral membrane, lanosterol slowed fusion somewhat, while polar sterols produced a more pronounced slowing and inhibition of fusion. No other sterols tested showed a significant perturbation in fusion rates, including ones previously shown to alter membrane bending moduli or phase behavior. Although fusion rates depend on viral cholesterol, they thus do not require cholesterol’s ability to support liquid-liquid phase coexistence. Using electron cryo-microscopy, we further find that sterol-dependent changes to hemagglutinin spatial patterning in the viral membrane do not require liquid-liquid phase coexistence. We therefore speculate that local sterol-hemagglutinin interactions in the viral envelope may control the rate-limiting step of fusion.


Biophysical Journal | 2016

Disentangling Viral Membrane Fusion from Receptor Binding Using Synthetic DNA-Lipid Conjugates

Robert J. Rawle; Steven G. Boxer; Peter M. Kasson

Enveloped viruses must bind to a receptor on the host membrane to initiate infection. Membrane fusion is subsequently initiated by a conformational change in the viral fusion protein, triggered by receptor binding, an environmental change, or both. Here, we present a strategy to disentangle the two processes of receptor binding and fusion using synthetic DNA-lipid conjugates to bind enveloped viruses to target membranes in the absence of receptor. This permits direct testing of whether receptor engagement affects the fusion mechanism as well as a comparison of fusion behavior across viruses with different receptor binding specificities. We demonstrate this approach by binding X-31 influenza virus to target vesicles and measuring the rates of individual pH-triggered lipid mixing events using fluorescence microscopy. Influenza lipid mixing kinetics are found to be independent of receptor binding, supporting the common yet previously unproven assumption that receptor binding does not produce any clustering or spatial rearrangement of viral hemagglutinin, which affects the rate-limiting step of pH-triggered fusion. This DNA-lipid tethering strategy should also allow the study of viruses where challenging receptor reconstitution has previously prevented single-virus fusion experiments.


Biomacromolecules | 2008

A real-time QCM-D approach to monitoring mammalian DNA damage using DNA adsorbed to a polyelectrolyte surface.

Robert J. Rawle; Malkiat S. Johal; Cynthia R. D. Selassie


Langmuir | 2007

Creation of mammalian single- and double-stranded DNA surfaces: a real-time QCM-D study.

Robert J. Rawle; Cynthia R. D. Selassie; Malkiat S. Johal


Biophysical Journal | 2014

Be Careful When Choosing Your Dye Label: Commercial, Water-Soluble Fluorophores Often Interact with Lipid Bilayers

Robert J. Rawle; Laura D. Hughes; Steven G. Boxer

Collaboration


Dive into the Robert J. Rawle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge