Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter N. Monk is active.

Publication


Featured researches published by Peter N. Monk.


Journal of Virology | 2004

CD81 Is Required for Hepatitis C Virus Glycoprotein-Mediated Viral Infection

Jie Zhang; Glenn Randall; Adrian Higginbottom; Peter N. Monk; Charles M. Rice; Jane A. McKeating

ABSTRACT CD81 has been described as a putative receptor for hepatitis C virus (HCV); however, its role in HCV cell entry has not been characterized due to the lack of an efficient cell culture system. We have examined the role of CD81 in HCV glycoprotein-dependent entry by using a recently developed retroviral pseudotyping system. Human immunodeficiency virus (HIV) pseudotypes bearing HCV E1E2 glycoproteins show a restricted tropism for human liver cell lines. Although all of the permissive cell lines express CD81, CD81 expression alone is not sufficient to allow viral entry. CD81 is required for HIV-HCV pseudotype infection since (i) a monoclonal antibody specific for CD81 inhibited infection of susceptible target cells and (ii) silencing of CD81 expression in Huh-7.5 hepatoma cells by small interfering RNAs inhibited HIV-HCV pseudotype infection. Furthermore, expression of CD81 in human liver cells that were previously resistant to infection, HepG2 and HH29, conferred permissivity of HCV pseudotype infection. The characterization of chimeric CD9/CD81 molecules confirmed that the large extracellular loop of CD81 is a determinant for viral entry. These data suggest a functional role for CD81 as a coreceptor for HCV glycoprotein-dependent viral cell entry.


British Journal of Pharmacology | 2007

Function, structure and therapeutic potential of complement C5a receptors

Peter N. Monk; Anne-Marie Scola; Praveen K. Madala; David P. Fairlie

Complement fragment (C)5a is a 74 residue pro‐inflammatory polypeptide produced during activation of the complement cascade of serum proteins in response to foreign surfaces such as microorganisms and tissue damaged by physical or chemical injury. C5a binds to at least two seven‐transmembrane domain receptors, C5aR (C5R1, CD88) and C5L2 (gpr77), expressed ubiquitously on a wide variety of cells but particularly on the surface of immune cells like macrophages, neutrophils and T cells. C5aR is a classical G protein‐coupled receptor that signals through Gαi and Gα16, whereas C5L2 does not appear to couple to G proteins and has no known signalling activity. Although C5a was first described as an anaphylatoxin and later as a leukocyte chemoattractant, the widespread expression of C5aR suggested more general functionality. Our understanding of the physiology of C5a has improved significantly in recent years through exploitation of receptor knockout and knockin mice, C5 and C5a antibodies, soluble recombinant C5a and C5a analogues and newly developed receptor antagonists. C5a is now also implicated in non‐immunological functions associated with developmental biology, CNS development and neurodegeneration, tissue regeneration, and haematopoiesis. Combined receptor mutagenesis, molecular modelling, structure‐activity relationship studies and species dependence for ligand potency on C5aR have been helpful for identifying ligand binding sites on the receptor and for defining mechanisms of receptor activation and inactivation. This review will highlight major developments in C5a receptor research that support C5aR as an important therapeutic target. The intriguing possibilities raised by the existence of a non‐signalling C5a receptor are also discussed.


Journal of Virology | 2000

Identification of Amino Acid Residues in CD81 Critical for Interaction with Hepatitis C Virus Envelope Glycoprotein E2

Adrian Higginbottom; Elizabeth R. Quinn; Chiung-Chi Kuo; Mike Flint; Louise Wilson; Elisabetta Bianchi; Alfredo Nicosia; Peter N. Monk; Jane A. McKeating; Shoshana Levy

ABSTRACT Human CD81 has been previously identified as the putative receptor for the hepatitis C virus envelope glycoprotein E2. The large extracellular loop (LEL) of human CD81 differs in four amino acid residues from that of the African green monkey (AGM), which does not bind E2. We mutated each of the four positions in human CD81 to the corresponding AGM residues and expressed them as soluble fusion LEL proteins in bacteria or as complete membrane proteins in mammalian cells. We found human amino acid 186 to be critical for the interaction with the viral envelope glycoprotein. This residue was also important for binding of certain anti-CD81 monoclonal antibodies. Mutating residues 188 and 196 did not affect E2 or antibody binding. Interestingly, mutation of residue 163 increased both E2 and antibody binding, suggesting that this amino acid contributes to the tertiary structure of CD81 and its ligand-binding ability. These observations have implications for the design of soluble high-affinity molecules that could target the CD81-E2 interaction site(s).


Glia | 2005

Microglia as potential contributors to motor neuron injury in amyotrophic lateral sclerosis

Siranush A. Sargsyan; Peter N. Monk; Pamela J. Shaw

The central nervous system (CNS) is equipped with a variety of cell types, all of which are assigned particular roles during the development, maintenance, function and repair of neural tissue. One glial cell type, microglia, deserves particular attention, as its role in the healthy or injured CNS is incompletely understood. Evidence exists for both regenerative and degenerative functions of these glial cells during neuronal injury. This review integrates the current knowledge of the role of microglia in an adult‐onset neurodegenerative disease, amyotrophic lateral sclerosis (ALS), and pays particular attention to the possible mechanisms of initiation and propagation of neuronal damage during disease onset and progression. Microglial cell properties, behavior and detected inflammatory reactions during the course of the disease are described. The neuroinflammatory changes that occur in a mouse model of ALS are summarized. The understanding of microglial function in the healthy and injured CNS could offer better diagnostic as well as therapeutic approaches for prevention, retardation, or repair of neural tissue degeneration.


Journal of Biological Chemistry | 2003

The chemoattractant receptor-like protein C5L2 binds the C3a des-Arg77/acylation-stimulating protein

David Kalant; Stuart A. Cain; Magdalena Maslowska; Allan D. Sniderman; Katherine Cianflone; Peter N. Monk

The orphan receptor C5L2 has recently been described as a high affinity binding protein for complement fragments C5a and C3a that, unlike the previously described C5a receptor (CD88), couples only weakly to Gi-like G proteins (Cain, S. A., and Monk, P. N. (2002) J. Biol. Chem. 277, 7165–7169). Here we demonstrate that C5L2 binds the metabolites of C4a and C3a, C4a des-Arg77, and C3a des-Arg77 (also known as the acylation-stimulating protein or ASP) at a site distinct from the C5a binding site. The binding of these metabolites to C5L2 does not stimulate the degranulation of transfected rat basophilic leukemia cells either through endogenous rat G proteins or when co-transfected with human Gα16. C3a des-Arg77/ASP and C3a can potently stimulate triglyceride synthesis in human skin fibroblasts and 3T3-L1 preadipocytes. Here we show that both cell types and human adipose tissue express C5L2 mRNA and that the human fibroblasts express C5L2 protein at the cell surface. This is the first demonstration of the expression of C5L2 in cells that bind and respond to C3a des-Arg77/ASP and C3a. Thus C5L2, a promiscuous complement fragment-binding protein with a high affinity site that binds C3a des-Arg77/ASP, may mediate the acylation-stimulating properties of this peptide.


Journal of Biological Chemistry | 2005

C5L2 is a functional receptor for acylation-stimulating protein.

David Kalant; Robin MacLaren; Wei Cui; Ratna Samanta; Peter N. Monk; Stéphane A. Laporte; Katherine Cianflone

C5L2 binds acylation-stimulating protein (ASP) with high affinity and is expressed in ASP-responsive cells. Functionality of C5L2 has not yet been demonstrated. Here we show that C5L2 is expressed in human subcutaneous and omental adipose tissue in both preadipocytes and adipocytes. In mice, C5L2 is expressed in all adipose tissues, at levels comparable with other tissues. Stable transfection of human C5L2 cDNA into HEK293 cells results in ASP stimulation of triglyceride synthesis (TGS) (193 ± 33%, 5 μm ASP, p < 0.001, where basal = 100%) and glucose transport (168 ± 21%, 10 μm ASP, p < 0.001). C3a similarly stimulates TGS (163 ± 12%, p < 0.001), but C5a and C5a des-Arg have no effect. The ASP mechanism is to increase Vmax of glucose transport (149%) and triglyceride (TG) synthesis activity (165%) through increased diacylglycerolacyltransferase activity (200%). Antisense oligonucleotide down-regulation of C5L2 in human skin fibroblasts decreases cell surface C5L2 (down to 54 ± 4% of control, p < 0.001, comparable with nonimmune background). ASP response is coordinately lost (basal TGS = 14.6 ± 1.6, with ASP = 21.0 ± 1.4 (144%), with ASP + oligonucleotides = 11.0 ± 0.8 pmol of TG/mg of cell protein, p < 0.001). In mouse 3T3-L1 preadipocytes, antisense oligonucleotides decrease C5L2 expression to 69.5 ± 0.5% of control, p < 0.001 (comparable with nonimmune) with a loss of ASP stimulation (basal TGS = 22.4 ± 2.9, with ASP = 39.6 ± 8.8 (177%), with ASP + oligonucleotides = 25.3 ± 3.0 pmol of TG/mg of cell protein, p < 0.001). C5L2 down-regulation and decreased ASP response correlate (r = 0.761, p < 0.0001 for HSF and r = 0.451, p < 0.05 for 3T3-L1). In HEK-hC5L2 expressing fluorescently tagged β-arrestin, ASP induced β-arrestin translocation to the plasma membrane and formation of endocytic complexes concurrently with increased phosphorylation of C5L2. This is the first demonstration that C5L2 is a functional receptor, mediating ASP triglyceride stimulation.


The International Journal of Biochemistry & Cell Biology | 2009

Complement component 5a (C5a)

Helga D. Manthey; Trent M. Woodruff; Stephen M. Taylor; Peter N. Monk

The 74 amino acid glycoprotein, complement component 5a (C5a), is a potent pro-inflammatory mediator cleaved enzymatically from its precursor, C5, upon activation of the complement cascade. C5a is quickly metabolised by carboxypeptidases, forming the less potent C5adesArg. Acting via a classical G protein-coupled receptor, CD88, C5a and C5adesArg exert a number of effects essential to the innate immune response, while their actions at the more recently discovered non-G protein-coupled receptor, C5L2 (or GPR77), remain unclear. The widespread expression of C5a receptors throughout the body allows C5a to elicit a broad range of effects. Thus, C5a has been found to be a significant pathogenic driver in a number of immuno-inflammatory diseases, making C5a inhibition an attractive therapeutic strategy.


The FASEB Journal | 2006

Therapeutic activity of C5a receptor antagonists in a rat model of neurodegeneration

Trent M. Woodruff; James W. Crane; Lavinia M. Proctor; Kathryn M. Buller; Annie B. Shek; Kurt J. De Vos; Sandra Pollitt; Hua M. Williams; Ian A. Shiels; Peter N. Monk; Stephen M. Taylor

The complement system is thought to be involved in the pathogenesis of numerous neurological diseases, although its precise role remains controversial. In this study we used orally active C5a receptor antagonists (PMX53 and PMX205) developed in our laboratories in a rat model of 3‐nitropropionic acid (3‐NP) ‐induced Huntingtons disease. Administration of the C5a antagonists (10 mg/kg/day, oral) either 48 h pre‐ or 48 h post‐toxin significantly reduced body weight loss, anorexia, and behavioral and motor deficits associated with 3‐NP intoxication. Striatal lesion size, apoptosis, neutrophil infiltration, and hemorrhage were also significantly reduced in C5a antagonist‐treated rats. Immunohistochemical analysis demonstrated marked deposition of C3 and C9, and upregulation of C5a receptors on neuronal cells at the time of lesion formation. Inhibition of prostaglandins or TNF‐α with ibuprofen or infliximab had no effect in this model. The C5a antagonists did not affect 3‐NP‐induced cell death when added directly to rat striatal neuronal cultures, indicating a secondary mechanism of action in vivo. Our findings demonstrate for the first time that complement activation in the brain, particularly C5a, is a key event in the pathogenesis of this disease model, and suggest a future role for inhibitors of C5a in the treatment of neurodegenerative diseases.—Woodruff, T. M., Crane, J. W., Proctor, L. M., Buller, K. M., Shek, A. B., de Vos, K., Pollitt, S., Williams, H. M., Shiels, I. A., Monk, P. N., Taylor, S. M. Therapeutic activity of C5a receptor antagonists in a rat model of neurodegeneration. FASEB J. 20, 1407–1417 (2006)


Glia | 2009

Astrocyte Function and Role in Motor Neuron Disease: A Future Therapeutic Target?

Daniel Blackburn; Siranush A. Sargsyan; Peter N. Monk; Pamela J. Shaw

Astrocytes are the most numerous cell type within the central nervous system (CNS) and perform a variety of tasks, from axon guidance and synaptic support, to the control of the blood brain barrier and blood flow. To perform these roles, there is a great variety of astrocytes. In this review, we summarize the function of astrocytes, in particular, their role in maintaining homeostasis at the synapse, regulating neuronal signaling, protecting neurons from oxidative damage, and determining the fate of endogenous neural precursors. The review also highlights recent developments indicating the role of astrocytes in motor neuron disease (MND), emphasizing their potential as therapeutic targets and agents in cell replacement therapy. The Cu‐Zn superoxide dismutase (SOD1) gene that has been implicated in 20% of cases of familial MND must be expressed in the glial cells as well as motor neurons to produce the disease state in murine models of disease. Selectively reducing mutant SOD1 (mSOD1) in astrocytes does not affect disease onset but slows disease progression, whereas reducing mSOD1 in motor neurons delays disease onset and slows early disease but has less effect on life span. This suggests that glial cells represent potential therapeutic targets in MND. However, the lack of specific markers for astrocytes, their precursors, and sub‐types means that our knowledge of astrocyte development/differentiation and response to injury lags far behind our understanding of function. Only by filling this knowledge gap can astrocytes be effectively targeted or replaced to successfully treat chronic CNS disorders such as MND.


Science | 2016

T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4⁺ T cells.

Giuseppina Arbore; Erin E. West; Rosanne Spolski; Avril A. B. Robertson; Andreas Klos; Claudia Rheinheimer; Pavel Dutow; Trent M. Woodruff; Zu Xi Yu; Luke A. J. O'Neill; Rebecca C. Coll; Alan Sher; Warren J. Leonard; Jörg Köhl; Peter N. Monk; Matthew A. Cooper; Matthew Arno; Behdad Afzali; Helen J. Lachmann; Andrew P. Cope; Katrin D. Mayer-Barber; Claudia Kemper

Innate immune crosstalk in T cells The classical view of immune activation is that innate immune cells, such as macrophages and dendritic cells, recognize invading microbes and then alert adaptive immune cells, such as T cells, to respond. Arbore et al. now show that innate and adaptive immunity converge in human and mouse T cells. Activated T cells express components of the complement cascade, which in turn leads to the assembly of NLRP3 inflammasomes—both critical components of innate immunity that help hosts detect and eliminate microbes. In T cells, complement and inflammasomes work together to push T cells to differentiate into a specialized subset of T cells important for eliminating intracellular bacteria. Science, this issue p. 10.1126/science.aad1210 Complement and NLRP3 inflammasomes work together to promote T helper 1 cell differentiation. INTRODUCTION The inflammasomes and the complement system are traditionally viewed as quintessential components of innate immunity required for the detection and elimination of pathogens. Assembly of the NLRP3 inflammasome in innate immune cells controls the maturation of interleukin (IL)–1β, a proinflammatory cytokine critical to host defense, whereas activation of the liver-derived complement key components C3 and C5 in serum leads to opsonization and removal of microbes and induction of the inflammatory reaction. Recent studies, however, have highlighted an unanticipated direct role for complement C3 also in human T cell immunity: The anaphylatoxin C3a receptor (C3aR) and the complement regulator CD46 (which binds C3b) are critical checkpoints in human T cell lineage commitment, and they control initiation and resolution of T helper 1 (TH1) responses in an autocrine fashion via T cell–derived and intracellularly activated C3. We explored a novel functional cross-talk of complement with the NLRP3 inflammasome within CD4+ T cells and determined how the cooperation between these two “classically” innate systems directly affects interferon-γ (IFN-γ) production by adaptive immune cells. RATIONALE Given the critical role of intracellular C3 activation in human TH1 responses and the importance of C5 activation products in inflammation, we investigated whether human CD4+ T cells also harbor an “intracellular C5 activation system” and by what means this system may contribute to effector responses by using C5aR1 and C5aR2 agonists and antagonists, T cells from patients with cryopyrin-associated periodic syndromes (CAPS), and mouse models of infection and autoimmunity. RESULTS Human CD4+ T cells expressed C5 and generated increased intracellular C5a upon T cell receptor activation and CD46 autocrine costimulation. Subsequent engagement of the intracellular C5aR1 by C5a induced the generation of reactive oxygen species (ROS) and the unexpected assembly of a functional NLRP3 inflammasome in CD4+ T cells, whereas the surface-expressed C5aR2 negatively controlled this process. NLRP3 inflammasome–dependent autocrine IL-1β secretion and activity were required for optimal IFN-γ production by T cells; consequently, dysregulation of NLRP3 function in these cells affected their normal effector responses. For example, mutated, constitutively active NLRP3 in T cells from patients with CAPS induced hyperactive TH1 responses that could be normalized with a NLRP3 inhibitor. The in vivo importance of a T cell–intrinsic NLRP3 inflammasome was further supported by the finding that IFN-γ production by Nlrp3–/– CD4+ T cells was significantly reduced during viral infections in mice and that diminished TH1 induction due to lack of NLRP3 function in a CD4+ T cell transfer model of colitis led to uncontrolled TH17 infiltration and/or expansion in the intestine and aggravated disease. CONCLUSION Our results demonstrate that the regulated cross-talk between intracellularly activated complement components (the “complosome”) and the NLRP3 inflammasome is fundamental to human TH1 induction and regulation. The finding that established innate immune pathways are also operative in adaptive immune cells and orchestrate immunological responses contributes to our understanding of immunobiology and immune system evolution. In addition, the results suggest that the complement-NLRP3 axis in T cells represents a novel therapeutic target for the modulation of TH1 activity in autoimmunity and infection. An intrinsic complement-NLRP3 axis regulates human TH1 responses. T cell receptor activation and CD46 costimulation trigger NLRP3 expression and intracellular C5a generation. Subsequent intracellular C5aR1 engagement induces ROS production (and possibly IL1B gene transcription) and NLRP3 assembly, which in turn mediates IL-1β maturation. Autocrine IL-1β promotes TH1 induction (IFN-γ production) but restricts TH1 contraction (IL-10 coexpression). C5aR2 cell surface activation by secreted C5a negatively controls these events via undefined mechanisms. Dysfunction of this system contributes to impaired TH1 responses in infection or increased TH17 responses during intestinal inflammation. The NLRP3 inflammasome controls interleukin-1β maturation in antigen-presenting cells, but a direct role for NLRP3 in human adaptive immune cells has not been described. We found that the NLRP3 inflammasome assembles in human CD4+ T cells and initiates caspase-1–dependent interleukin-1β secretion, thereby promoting interferon-γ production and T helper 1 (TH1) differentiation in an autocrine fashion. NLRP3 assembly requires intracellular C5 activation and stimulation of C5a receptor 1 (C5aR1), which is negatively regulated by surface-expressed C5aR2. Aberrant NLRP3 activity in T cells affects inflammatory responses in human autoinflammatory disease and in mouse models of inflammation and infection. Our results demonstrate that NLRP3 inflammasome activity is not confined to “innate immune cells” but is an integral component of normal adaptive TH1 responses.

Collaboration


Dive into the Peter N. Monk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Klos

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge