Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adrian Higginbottom is active.

Publication


Featured researches published by Adrian Higginbottom.


Journal of Virology | 2004

CD81 Is Required for Hepatitis C Virus Glycoprotein-Mediated Viral Infection

Jie Zhang; Glenn Randall; Adrian Higginbottom; Peter N. Monk; Charles M. Rice; Jane A. McKeating

ABSTRACT CD81 has been described as a putative receptor for hepatitis C virus (HCV); however, its role in HCV cell entry has not been characterized due to the lack of an efficient cell culture system. We have examined the role of CD81 in HCV glycoprotein-dependent entry by using a recently developed retroviral pseudotyping system. Human immunodeficiency virus (HIV) pseudotypes bearing HCV E1E2 glycoproteins show a restricted tropism for human liver cell lines. Although all of the permissive cell lines express CD81, CD81 expression alone is not sufficient to allow viral entry. CD81 is required for HIV-HCV pseudotype infection since (i) a monoclonal antibody specific for CD81 inhibited infection of susceptible target cells and (ii) silencing of CD81 expression in Huh-7.5 hepatoma cells by small interfering RNAs inhibited HIV-HCV pseudotype infection. Furthermore, expression of CD81 in human liver cells that were previously resistant to infection, HepG2 and HH29, conferred permissivity of HCV pseudotype infection. The characterization of chimeric CD9/CD81 molecules confirmed that the large extracellular loop of CD81 is a determinant for viral entry. These data suggest a functional role for CD81 as a coreceptor for HCV glycoprotein-dependent viral cell entry.


Journal of Virology | 2000

Identification of Amino Acid Residues in CD81 Critical for Interaction with Hepatitis C Virus Envelope Glycoprotein E2

Adrian Higginbottom; Elizabeth R. Quinn; Chiung-Chi Kuo; Mike Flint; Louise Wilson; Elisabetta Bianchi; Alfredo Nicosia; Peter N. Monk; Jane A. McKeating; Shoshana Levy

ABSTRACT Human CD81 has been previously identified as the putative receptor for the hepatitis C virus envelope glycoprotein E2. The large extracellular loop (LEL) of human CD81 differs in four amino acid residues from that of the African green monkey (AGM), which does not bind E2. We mutated each of the four positions in human CD81 to the corresponding AGM residues and expressed them as soluble fusion LEL proteins in bacteria or as complete membrane proteins in mammalian cells. We found human amino acid 186 to be critical for the interaction with the viral envelope glycoprotein. This residue was also important for binding of certain anti-CD81 monoclonal antibodies. Mutating residues 188 and 196 did not affect E2 or antibody binding. Interestingly, mutation of residue 163 increased both E2 and antibody binding, suggesting that this amino acid contributes to the tertiary structure of CD81 and its ligand-binding ability. These observations have implications for the design of soluble high-affinity molecules that could target the CD81-E2 interaction site(s).


PLOS ONE | 2010

Mutations in CHMP2B in Lower Motor Neuron Predominant Amyotrophic Lateral Sclerosis (ALS)

Laura E. Cox; Laura Ferraiuolo; Emily F. Goodall; Paul R. Heath; Adrian Higginbottom; Heather Mortiboys; Hannah Hollinger; Judith Hartley; Alice Brockington; Christine E. Burness; Karen E. Morrison; Stephen B. Wharton; Andrew J. Grierson; Janine Kirby; Pamela J. Shaw

Background Amyotrophic lateral sclerosis (ALS), a common late-onset neurodegenerative disease, is associated with fronto-temporal dementia (FTD) in 3–10% of patients. A mutation in CHMP2B was recently identified in a Danish pedigree with autosomal dominant FTD. Subsequently, two unrelated patients with familial ALS, one of whom also showed features of FTD, were shown to carry missense mutations in CHMP2B. The initial aim of this study was to determine whether mutations in CHMP2B contribute more broadly to ALS pathogenesis. Methodology/Principal Findings Sequencing of CHMP2B in 433 ALS cases from the North of England identified 4 cases carrying 3 missense mutations, including one novel mutation, p.Thr104Asn, none of which were present in 500 neurologically normal controls. Analysis of clinical and neuropathological data of these 4 cases showed a phenotype consistent with the lower motor neuron predominant (progressive muscular atrophy (PMA)) variant of ALS. Only one had a recognised family history of ALS and none had clinically apparent dementia. Microarray analysis of motor neurons from CHMP2B cases, compared to controls, showed a distinct gene expression signature with significant differential expression predicting disassembly of cell structure; increased calcium concentration in the ER lumen; decrease in the availability of ATP; down-regulation of the classical and p38 MAPK signalling pathways, reduction in autophagy initiation and a global repression of translation. Transfection of mutant CHMP2B into HEK-293 and COS-7 cells resulted in the formation of large cytoplasmic vacuoles, aberrant lysosomal localisation demonstrated by CD63 staining and impairment of autophagy indicated by increased levels of LC3-II protein. These changes were absent in control cells transfected with wild-type CHMP2B. Conclusions/Significance We conclude that in a population drawn from North of England pathogenic CHMP2B mutations are found in approximately 1% of cases of ALS and 10% of those with lower motor neuron predominant ALS. We provide a body of evidence indicating the likely pathogenicity of the reported gene alterations. However, absolute confirmation of pathogenicity requires further evidence, including documentation of familial transmission in ALS pedigrees which might be most fruitfully explored in cases with a LMN predominant phenotype.


Brain | 2014

Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions

Johnathan Cooper-Knock; Matthew J. Walsh; Adrian Higginbottom; J. Robin Highley; Mark J. Dickman; Dieter Edbauer; Stephen B. Wharton; Stuart A. Wilson; Janine Kirby; Guillaume M. Hautbergue; Pamela J. Shaw

Expansion of GGGGCC repeats in C9orf72 causes familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, but the underlying mechanism is unclear. Using RNA pulldown and immunohistochemistry in ALS biosamples, Cooper-Knock et al. identify proteins that bind to the repeat expansions. Disrupted RNA splicing and/or nuclear export may underlie C9orf72-ALS pathogenesis.


Human Molecular Genetics | 2010

PTEN depletion rescues axonal growth defect and improves survival in SMN-deficient motor neurons

Ke Ning; Carsten Drepper; Chiara F. Valori; Mansoor Ahsan; Matthew Wyles; Adrian Higginbottom; Thomas Herrmann; Pamela J. Shaw; Mimoun Azzouz; Michael Sendtner

Phosphatase and tensin homolog (PTEN), a negative regulator of the mammalian target of rapamycin (mTOR) pathway, is widely involved in the regulation of protein synthesis. Here we show that the PTEN protein is enriched in cell bodies and axon terminals of purified motor neurons. We explored the role of the PTEN pathway by manipulating PTEN expression in healthy and diseased motor neurons. PTEN depletion led to an increase in growth cone size, promotion of axonal elongation and increased survival of these cells. These changes were associated with alterations of downstream signaling pathways for local protein synthesis as revealed by an increase in pAKT and p70S6. Most notably, this treatment also restores beta-actin protein levels in axonal growth cones of SMN-deficient motor neurons. Furthermore, we report here that a single injection of adeno-associated virus serotype 6 (AAV6) expressing siPTEN into hind limb muscles at postnatal day 1 in SMNDelta7 mice leads to a significant PTEN depletion and robust improvement in motor neuron survival. Taken together, these data indicate that PTEN-mediated regulation of protein synthesis in motor neurons could represent a target for therapy in spinal muscular atrophy.


The EMBO Journal | 2016

The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy

Christopher P. Webster; Emma F. Smith; Claudia S. Bauer; Annekathrin Moller; Guillaume M. Hautbergue; Laura Ferraiuolo; Monika A. Myszczynska; Adrian Higginbottom; Matthew J. Walsh; Alexander J. Whitworth; Brian K. Kaspar; Kathrin Meyer; Pamela J. Shaw; Andrew J. Grierson; Kurt J. De Vos

A GGGGCC hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). C9orf72 encodes two C9orf72 protein isoforms of unclear function. Reduced levels of C9orf72 expression have been reported in C9ALS/FTD patients, and although C9orf72 haploinsufficiency has been proposed to contribute to C9ALS/FTD, its significance is not yet clear. Here, we report that C9orf72 interacts with Rab1a and the Unc‐51‐like kinase 1 (ULK1) autophagy initiation complex. As a Rab1a effector, C9orf72 controls initiation of autophagy by regulating the Rab1a‐dependent trafficking of the ULK1 autophagy initiation complex to the phagophore. Accordingly, reduction of C9orf72 expression in cell lines and primary neurons attenuated autophagy and caused accumulation of p62‐positive puncta reminiscent of the p62 pathology observed in C9ALS/FTD patients. Finally, basal levels of autophagy were markedly reduced in C9ALS/FTD patient‐derived iNeurons. Thus, our data identify C9orf72 as a novel Rab1a effector in the regulation of autophagy and indicate that C9orf72 haploinsufficiency and associated reductions in autophagy might be the underlying cause of C9ALS/FTD‐associated p62 pathology.


Brain | 2011

Dysregulation of astrocyte–motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis

Laura Ferraiuolo; Adrian Higginbottom; Paul R. Heath; Sian Barber; David Greenald; Janine Kirby; Pamela J. Shaw

Amyotrophic lateral sclerosis is a neurodegenerative disease in which death of motoneurons leads to progressive failure of the neuromuscular system resulting in death frequently within 2-3 years of symptom onset. Focal onset and propagation of the disease symptoms to contiguous motoneuron groups is a striking feature of the human disease progression. Recent work, using mutant superoxide dismutase 1 murine models and in vitro culture systems has indicated that astrocytes are likely to contribute to the propagation of motoneuron injury and disease progression. However, the basis of this astrocyte toxicity and/or failure of motoneuron support has remained uncertain. Using a combination of in vivo and in vitro model systems of superoxide dismutase 1-related amyotrophic lateral sclerosis, linked back to human biosamples, we set out to elucidate how astrocyte properties change in the presence of mutant superoxide dismutase 1 to contribute to motoneuron injury. Gene expression profiling of spinal cord astrocytes from presymptomatic transgenic mice expressing mutant superoxide dismutase 1 revealed two striking changes. First, there was evidence of metabolic dysregulation and, in particular, impairment of the astrocyte lactate efflux transporter, with resultant decrease of spinal cord lactate levels. Second, there was evidence of increased nerve growth factor production and dysregulation of the ratio of pro-nerve growth factor to mature nerve growth factor, favouring p75 receptor expression and activation by neighbouring motoneurons. Functional in vitro studies showed that astrocytes expressing mutant superoxide dismutase 1 are toxic to normal motoneurons. We provide evidence that reduced metabolic support from lactate release and activation of pro-nerve growth factor-p75 receptor signalling are key components of this toxicity. Preservation of motoneuron viability could be achieved by increasing lactate provision to motoneurons, depletion of increased pro-nerve growth factor levels or p75 receptor blockade. These findings are likely to be relevant to human amyotrophic lateral sclerosis, where we have demonstrated increased levels of pro-nerve growth factor in cerebrospinal fluid and increased expression of the p75 receptor by spinal motoneurons. Taken together, these data confirm that altered properties of astrocytes are likely to play a crucial role in the propagation of motoneuron injury in superoxide dismutase 1-related amyotrophic lateral sclerosis and indicate that manipulation of the energy supply to motoneurons as well as inhibition of p75 receptor signalling may represent valuable neuroprotective strategies.


Free Radical Biology and Medicine | 2009

An in vitro screening cascade to identify neuroprotective antioxidants in ALS

Siân C. Barber; Adrian Higginbottom; Richard Mead; Stuart Barber; Pamela J. Shaw

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease, characterized by progressive dysfunction and death of motor neurons. Although evidence for oxidative stress in ALS pathogenesis is well described, antioxidants have generally shown poor efficacy in animal models and human clinical trials. We have developed an in vitro screening cascade to identify antioxidant molecules capable of rescuing NSC34 motor neuron cells expressing an ALS-associated mutation of superoxide dismutase 1. We have tested known antioxidants and screened a library of 2000 small molecules. The library screen identified 164 antioxidant molecules, which were refined to the 9 most promising molecules in subsequent experiments. Analysis of the in silico properties of hit compounds and a review of published literature on their in vivo effectiveness have enabled us to systematically identify molecules with antioxidant activity combined with chemical properties necessary to penetrate the central nervous system. The top-performing molecules identified include caffeic acid phenethyl ester, esculetin, and resveratrol. These compounds were tested for their ability to rescue primary motor neuron cultures after trophic factor withdrawal, and the mechanisms of action of their antioxidant effects were investigated. Subsequent in vivo studies can be targeted using molecules with the greatest probability of success.


Journal of Virology | 2006

Recombinant extracellular domains of tetraspanin proteins are potent inhibitors of the infection of macrophages by human immunodeficiency virus type 1

Siu-hong Ho; F. Martin; Adrian Higginbottom; Lynda J. Partridge; V. Parthasarathy; Gregory W. Moseley; Peter Lopez; Cecilia Cheng-Mayer; Peter N. Monk

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infection of human macrophages can be inhibited by antibodies which bind to the tetraspanin protein CD63, but not by antibodies that bind to other members of the tetraspanin family. This inhibitory response was limited to CCR5 (R5)-tropic virus and was only observed using macrophages, but not T cells. Here, we show that recombinant soluble forms of the large extracellular domain (EC2) of human tetraspanins CD9, CD63, CD81, and CD151 produced as fusion proteins with glutathione S-transferase (GST) can all potently and completely inhibit R5 HIV-1 infection of macrophages with 50% inhibitory concentration values of 0.11 to 1.2 nM. Infection of peripheral blood mononuclear cells could also be partly inhibited, although higher concentrations of EC2 proteins were required. Inhibition was largely coreceptor independent, as macrophage infections by virions pseudotyped with CXCR4 (X4)-tropic HIV-1 or vesicular stomatitis virus (VSV)-G glycoproteins were also inhibited, but was time dependent, since addition prior to or during, but not after, virus inoculation resulted in potent inhibition. Incubation with tetraspanins did not decrease CD4 or HIV-1 coreceptor expression but did block virion uptake. Colocalization of fluorescently labeled tetraspanin EC2 proteins and HIV-1 virions within, and with CD4 and CXCR4 at the cell surfaces of, macrophages could be detected, and internalized tetraspanin EC2 proteins were directed to vesicular compartments that contained internalized dextran and transferrin. Collectively, the data suggest that the mechanism of inhibition of HIV-1 infection by tetraspanins is at the step of virus entry, perhaps via interference with binding and/or the formation of CD4-coreceptor complexes within microdomains that are required for membrane fusion events.


PLOS ONE | 2015

C9ORF72 GGGGCC Expanded Repeats Produce Splicing Dysregulation which Correlates with Disease Severity in Amyotrophic Lateral Sclerosis.

Johnathan Cooper-Knock; Joanna J. Bury; Paul R. Heath; Matthew Wyles; Adrian Higginbottom; Catherine Gelsthorpe; J. Robin Highley; Guillaume M. Hautbergue; Magnus Rattray; Janine Kirby; Pamela J. Shaw

Objective An intronic GGGGCC-repeat expansion of C9ORF72 is the most common genetic variant of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. The mechanism of neurodegeneration is unknown, but a direct effect on RNA processing mediated by RNA foci transcribed from the repeat sequence has been proposed. Methods Gene expression profiling utilised total RNA extracted from motor neurons and lymphoblastoid cell lines derived from human ALS patients, including those with an expansion of C9ORF72, and controls. In lymphoblastoid cell lines, expansion length and the frequency of sense and antisense RNA foci was also examined. Results Gene level analysis revealed a number of differentially expressed networks and both cell types exhibited dysregulation of a network functionally enriched for genes encoding ‘RNA splicing’ proteins. There was a significant overlap of these genes with an independently generated list of GGGGCC-repeat protein binding partners. At the exon level, in lymphoblastoid cells derived from C9ORF72-ALS patients splicing consistency was lower than in lines derived from non-C9ORF72 ALS patients or controls; furthermore splicing consistency was lower in samples derived from patients with faster disease progression. Frequency of sense RNA foci showed a trend towards being higher in lymphoblastoid cells derived from patients with shorter survival, but there was no detectable correlation between disease severity and DNA expansion length. Significance Up-regulation of genes encoding predicted binding partners of the C9ORF72 expansion is consistent with an attempted compensation for sequestration of these proteins. A number of studies have analysed changes in the transcriptome caused by C9ORF72 expansion, but to date findings have been inconsistent. As a potential explanation we suggest that dynamic sequestration of RNA processing proteins by RNA foci might lead to a loss of splicing consistency; indeed in our samples measurement of splicing consistency correlates with disease severity.

Collaboration


Dive into the Adrian Higginbottom's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janine Kirby

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge