Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter N. Nirmalraj.
ACS Nano | 2009
Sukanta De; Thomas M. Higgins; Philip E. Lyons; Evelyn M. Doherty; Peter N. Nirmalraj; Werner J. Blau; John J. Boland; Jonathan N. Coleman
We have used aqueous dispersions of silver nanowires to prepare thin, flexible, transparent, conducting films. The nanowires are of length and diameter close to 6.5 μm and 85 nm, respectively. At low thickness, the films consist of networks but appear to become bulk-like for mean film thicknesses above ∼160 nm. These films can be very transparent with optical transmittance reaching as high as 92% for low thickness. The transmittance (550 nm) decreases with increasing thickness, consistent with an optical conductivity of 6472 S/m. The films are also very uniform; the transmittance varies spatially by typically <2%. The sheet resistance decreases with increasing thickness, falling below 1 Ω/◻ for thicknesses above 300 nm. The DC conductivity increases from 2 × 10(5) S/m for very thin films before saturating at 5 × 10(6) S/m for thicker films. Similarly, the ratio of DC to optical conductivity increases with increasing thickness from 25 for the thinnest films, saturating at ∼500 for thicknesses above ∼160 nm. We believe this is the highest conductivity ratio ever observed for nanostructured films and is matched only by doped metal oxide films. These nanowire films are electromechanically very robust, with all but the thinnest films showing no change in sheet resistance when flexed over >1000 cycles. Such results make these films ideal as replacements for indium tin oxide as transparent electrodes. We have prepared films with optical transmittance and sheet resistance of 85% and 13 Ω/◻, respectively. This is very close to that displayed by commercially available indium tin oxide.
Nano Letters | 2009
Peter N. Nirmalraj; Philip E. Lyons; Sukanta De; Jonathan N. Coleman; John J. Boland
Transport in single-walled carbon nanotubes (SWCNTs) networks is shown to be dominated by resistance at network junctions which scale with the size of the interconnecting bundles. Acid treatment, known to dope individual tubes, actually produces a dramatic reduction in junction resistances, whereas annealing significantly increases this resistance. Measured junction resistances for pristine, acid-treated and annealed SWCNT bundles correlate with conductivities of the corresponding films, in excellent agreement with a model in which junctions control the overall network performance.
ACS Nano | 2009
Sukanta De; Philip E. Lyons; Sophie Sorel; Evelyn M. Doherty; Paul J. King; Werner J. Blau; Peter N. Nirmalraj; John J. Boland; Vittorio Scardaci; Jerome Joimel; Jonathan N. Coleman
We have prepared flexible, transparent, and very conducting thin composite films from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), filled with both arc discharge and HIPCO single-walled nanotubes, at high loading level. The films are of high optical uniformity. The arc discharge nanotube-filled composites were significantly more conductive, demonstrating DC conductivities of >10(5) S/m for mass fractions >50 wt %. The ratio of DC to optical conductivity was higher for composites with mass fractions of 55-60 wt % than for nanotube-only films. For an 80 nm thick composite, filled with 60 wt % arc discharge nanotubes, this conductivity ratio was maximized at sigma(DC)/sigma(Op) = 15. This translates into transmittance (550 nm) and sheet resistance of 75 and 80 Omega/square, respectively. These composites were electromechanically very stable, showing <1% resistance change over 130 bend cycles.
Nano Letters | 2011
Peter N. Nirmalraj; Tarek Lutz; Shishir Kumar; Georg S. Duesberg; John J. Boland
In this article we map out the thickness dependence of the resistivity of individual graphene strips, from single layer graphene through to the formation of graphitic structures. We report exceptionally low resistivity values for single strips and demonstrate that the resistivity distribution for single strips is anomalously narrow when compared to bi- and trilayer graphene, consistent with the unique electronic properties of single graphene layers. In agreement with theoretical predictions, we show that the transition to bulklike resistivities occurs at seven to eight layers of graphene. Moreover, we demonstrate that the contact resistance between graphene flakes in a graphene network scales with the flake thickness and the implications for transparent conductor applications are discussed.
Nano Letters | 2012
Peter N. Nirmalraj; Allen T. Bellew; Alan P. Bell; Jessamyn A. Fairfield; Eoin K. McCarthy; Curtis O’Kelly; Luiz F. C. Pereira; Sophie Sorel; Diana Morosan; Jonathan N. Coleman; M. S. Ferreira; John J. Boland
Connectivity in metallic nanowire networks with resistive junctions is manipulated by applying an electric field to create materials with tunable electrical conductivity. In situ electron microscope and electrical measurements visualize the activation and evolution of connectivity within these networks. Modeling nanowire networks, having a distribution of junction breakdown voltages, reveals universal scaling behavior applicable to all network materials. We demonstrate how local connectivity within these networks can be programmed and discuss material and device applications.
Nature Materials | 2014
Peter N. Nirmalraj; Damien Thompson; Agustín Molina-Ontoria; Marilyne Sousa; Nazario Martín; Bernd Gotsmann; Heike Riel
Evaluating the built-in functionality of nanomaterials under practical conditions is central for their proposed integration as active components in next-generation electronics. Low-dimensional materials from single atoms to molecules have been consistently resolved and manipulated under ultrahigh vacuum at low temperatures. At room temperature, atomic-scale imaging has also been performed by probing materials at the solid/liquid interface. We exploit this electrical interface to develop a robust electronic decoupling platform that provides precise information on molecular energy levels recorded using in situ scanning tunnelling microscopy/spectroscopy with high spatial and energy resolution in a high-density liquid environment. Our experimental findings, supported by ab initio electronic structure calculations and atomic-scale molecular dynamics simulations, reveal direct mapping of single-molecule structure and resonance states at the solid/liquid interface. We further extend this approach to resolve the electronic structure of graphene monolayers at atomic length scales under standard room-temperature operating conditions.
Nature Nanotechnology | 2017
Nico Mosso; Ute Drechsler; Fabian Menges; Peter N. Nirmalraj; S. Karg; Heike Riel; Bernd Gotsmann
Heat transport and dissipation at the nanoscale severely limit the scaling of high-performance electronic devices and circuits. Metallic atomic junctions serve as model systems to probe electrical and thermal transport down to the atomic level as well as quantum effects that occur in one-dimensional (1D) systems. Whereas charge transport in atomic junctions has been studied intensively in the past two decades, heat transport remains poorly characterized because it requires the combination of a high sensitivity to small heat fluxes and the formation of stable atomic contacts. Here we report heat-transfer measurements through atomic junctions and analyse the thermal conductance of single-atom gold contacts at room temperature. Simultaneous measurements of charge and heat transport reveal the proportionality of electrical and thermal conductance, quantized with the respective conductance quanta. This constitutes a verification of the Wiedemann-Franz law at the atomic scale.
Langmuir | 2013
Peter N. Nirmalraj; Heinz Schmid; Bernd Gotsmann; Heike Riel
The control and repair of defects at metal/molecule interfaces is central to the realization of molecular electronic circuits with reproducible performance. The fundamental mechanism governing defect (pore) evolution on mica-supported metal surfaces, its propagation in self-assembled molecular layers, and its implications for molecular junction devices are discussed. Pore eradication by replacing mica with halide platforms coupled with elevated substrate temperature during metal deposition yields exceptionally ultraflat metal landscapes. In situ scanning tunneling microscopy further substantiates molecular locking at defect sites and upon defect healing; the emergence of a closely packed 2-D molecular architecture is demonstrated with nanometer-scale spatial resolution in liquids.
Scientific Reports | 2015
Peter N. Nirmalraj; Damien Thompson; Heike Riel
The drive towards organic computing is gaining momentum. Interestingly, the building blocks for such architectures is based on molecular ensembles extending from nucleic acids to synthetic molecules. Advancement in this direction requires devising precise nanoscopic experiments and model calculations to decipher the mechanisms governing the integration of a large number of molecules over time at room-temperature. Here, we report on ultrahigh-resolution scanning tunnelling microscopic measurements to register the motion of molecules in the absence of external stimulus in liquid medium. We observe the collective behavior of individual molecules within a swarm which constantly iterate their position to attain an energetically favourable site. Our approach provides a consistent pathway to register molecular self-assembly in sequential steps from visualising thermodynamically driven repair of defects up until the formation of a stable two-dimensional configuration. These elemental findings on molecular surface dynamics, self-repair and intermolecular kinetic pathways rationalised by atom-scale simulations can be explored for developing new models in algorithmic self-assembly to realisation of evolvable hardware.
ACS Nano | 2010
Peter N. Nirmalraj; John J. Boland
Conductance imaging atomic force microscopy was used to probe the electrical interface between single-walled carbon nanotubes and metal electrodes. The contact resistance was optimized by applying a local voltage pulse (approximately 2 s) using a conductive probe with controlled loading force to the region of the metal electrode contacting the nanotube. Using this technique, we show that Pd forms superior contacts, resulting in contact resistance values that are among the lowest ever reported.