Peter Neubauer
Technical University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Neubauer.
Journal of Biotechnology | 2001
Sven-Olof Enfors; Mehmedalija Jahic; A. Rozkov; Bo Xu; Michael Hecker; Britta Jürgen; Elke Krüger; Thomas Schweder; G. Hamer; D. O'Beirne; N. Noisommit-Rizzi; Matthias Reuss; L. Boone; Christopher J. Hewitt; Caroline M. McFarlane; Alvin W. Nienow; T. Kovacs; Christian Trägårdh; Laszlo Fuchs; Johan Revstedt; P. C. Friberg; Bjørn Helge Hjertager; G. Blomsten; H. Skogman; S. Hjort; Frans W. J. M. M. Hoeks; H. Y. Lin; Peter Neubauer; R.G.J.M. van der Lans; Karel Ch. A. M. Luyben
Escherichia coli fed-batch cultivations at 22 m3 scale were compared to corresponding laboratory scale processes and cultivations using a scale-down reactor furnished with a high-glucose concentration zone to mimic the conditions in a feed zone of the large bioreactor. Formate accumulated in the large reactor, indicating the existence of oxygen limitation zones. It is suggested that the reduced biomass yield at large scale partly is due to repeated production/re-assimilation of acetate from overflow metabolism and mixed acid fermentation products due to local moving zones with oxygen limitation. The conditions that generated mixed-acid fermentation in the scale-down reactor also induced a number of stress responses, monitored by analysis of mRNA of selected stress induced genes. The stress responses were relaxed when the cells returned to the substrate limited and oxygen sufficient compartment of the reactor. Corresponding analysis in the large reactor showed that the concentration of mRNA of four stress induced genes was lowest at the sampling port most distant from the feed zone. It is assumed that repeated induction/relaxation of stress responses in a large bioreactor may contribute to altered physiological properties of the cells grown in large-scale bioreactor. Flow cytometric analysis revealed reduced damage with respect to cytoplasmic membrane potential and integrity in cells grown in the dynamic environments of the large scale reactor and the scale-down reactor.
Microbial Cell Factories | 2008
Johanna Panula-Perälä; Juozas Šiurkus; Antti Vasala; Robert Wilmanowski; Marco G. Casteleijn; Peter Neubauer
BackgroundHere we describe a novel cultivation method, called EnBase™, or enzyme-based-substrate-delivery, for the growth of microorganisms in millilitre and sub-millilitre scale which yields 5 to 20 times higher cell densities compared to standard methods. The novel method can be directly applied in microwell plates and shake flasks without any requirements for additional sensors or liquid supply systems. EnBase is therefore readily applicable for many high throughput applications, such as DNA production for genome sequencing, optimisation of protein expression, production of proteins for structural genomics, bioprocess development, and screening of enzyme and metagenomic libraries.ResultsHigh cell densities with EnBase are obtained by applying the concept of glucose-limited fed-batch cultivation which is commonly used in industrial processes. The major difference of the novel method is that no external glucose feed is required, but glucose is released into the growth medium by enzymatic degradation of starch. To cope with the high levels of starch necessary for high cell density cultivation, starch is supplied to the growing culture suspension by continuous diffusion from a storage gel.Our results show that the controlled enzyme-based supply of glucose allows a glucose-limited growth to high cell densities of OD600 = 20 to 30 (corresponding to 6 to 9 g l-1 cell dry weight) without the external feed of additional compounds in shake flasks and 96-well plates. The final cell density can be further increased by addition of extra nitrogen during the cultivation. Production of a heterologous triosphosphate isomerase in E. coli BL21(DE3) resulted in 10 times higher volumetric product yield and a higher ratio of soluble to insoluble product when compared to the conventional production method.ConclusionThe novel EnBase method is robust and simple-to-apply for high cell density cultivation in shake flasks and microwell plates. The potential of the system is that the microbial growth rate and oxygen consumption can be simply controlled by the amount (and principally also by the activity) of the starch-degrading enzyme. This solves the problems of uncontrolled growth, oxygen limitation, and severe pH drop in shaken cultures. In parallel the method provides the basis for enhanced cell densities. The feasibility of the new method has been shown for 96-well plates and shake flasks and we believe that it can easily be adapted to different microwell and deepwell plate formats and shake flasks. Therefore EnBase will be a helpful tool especially in high throughput applications.
Microbial Cell Factories | 2010
Mirja Krause; Kaisa Ukkonen; Tatu J.K. Haataja; Maria Ruottinen; Tuomo Glumoff; Antje Neubauer; Peter Neubauer; Antti Vasala
BackgroundCultivations for recombinant protein production in shake flasks should provide high cell densities, high protein productivity per cell and good protein quality. The methods described in laboratory handbooks often fail to reach these goals due to oxygen depletion, lack of pH control and the necessity to use low induction cell densities. In this article we describe the impact of a novel enzymatically controlled fed-batch cultivation technology on recombinant protein production in Escherichia coli in simple shaken cultures.ResultsThe enzymatic glucose release system together with a well-balanced combination of mineral salts and complex medium additives provided high cell densities, high protein yields and a considerably improved proportion of soluble proteins in harvested cells. The cultivation method consists of three steps: 1) controlled growth by glucose-limited fed-batch to OD600 ~10, 2) addition of growth boosters together with an inducer providing efficient protein synthesis within a 3 to 6 hours period, and 3) a slow growth period (16 to 21 hours) during which the recombinant protein is slowly synthesized and folded. Cell densities corresponding to 10 to 15 g l-1 cell dry weight could be achieved with the developed technique. In comparison to standard cultures in LB, Terrific Broth and mineral salt medium, we typically achieved over 10-fold higher volumetric yields of soluble recombinant proteins.ConclusionsWe have demonstrated that by applying the novel EnBase® Flo cultivation system in shaken cultures high cell densities can be obtained without impairing the productivity per cell. Especially the yield of soluble (correctly folded) proteins was significantly improved in comparison to commonly used LB, Terrific Broth or mineral salt media. This improvement is thought to result from a well controlled physiological state during the whole process. The higher volumetric yields enable the use of lower culture volumes and can thus significantly reduce the amount of time and effort needed for downstream processing or process optimization. We claim that the new cultivation system is widely applicable and, as it is very simple to apply, could widely replace standard shake flask approaches.
Biotechnology and Bioengineering | 2000
Britta Jürgen; Hong Ying Lin; Stefan Riemschneider; Christian Scharf; Peter Neubauer; Roland Schmid; Michael Hecker; Thomas Schweder
The cellular response of Escherichia coli to overproduction of the insoluble heterologous protein alpha-glucosidase of Saccharomyces cerevisiae during a glucose-limited fed-batch fermentation was analyzed on the transcriptional and the translational levels. After the induction of the tac-regulated overexpression of the recombinant model protein, a significant but transient increase of the mRNA levels of the heat shock genes lon and dnaK could be observed. The mRNA level of the gene coding for the inclusion body-associated protein IbpB showed the strongest increase and remained at a clearly higher level until the end of the fermentation. By contrast, the mRNA levels of htrA and ppiB were decreased after induction of the alpha-glucosidase overexpression. Analysis of the soluble cytoplasmic protein fraction 3 h after induction revealed increased levels of the chaperones GroEL, DnaK, and Tig and a decrease in the protein levels of the two ribosomal proteins S6 and L9, the peptidylprolyl-cis-trans-isomerase PpiB, and the sigma(38)-dependent protein Dps. Analysis of the aggregated protein fraction revealed a remarkably inhomogeneous composition of the alpha-glucosidase inclusion bodies. N-terminal sequencing and MALDI-TOF mass spectrometry identification showed that most of these spots are fragments of the heterologous alpha-glucosidase. Host stress proteins, like DnaK, GroEL, IbpA, IbpB, and OmpT, have been found to be associated with the alpha-glucosidase protein aggregates.
Current Opinion in Biotechnology | 2010
Peter Neubauer; Stefan Junne
Analytical approaches for a comprehensive understanding of the metabolic networks in microbial cultures are mostly based on small-scale cultures which are in a steady state or undergo dynamic changes. For drawing conclusions to industrial-scale bioprocesses, however, it is important to understand that cells in large-scale bioreactors are exposed steadily to fast changes, because of an inhomogeneous environment. Analytical approaches that aim for large-scale bioprocess understanding need to apply specific laboratory simulators. Recent developments in cell cultivation techniques and computational tools provide improved possibilities to evaluate how a process will behave in the final scale. These simulators will pave the way for screening robust strains and process conditions.
Journal of Biotechnology | 2000
J. Winter; Peter Neubauer; Rainer Rudolph
The production of human proinsulin in its disulfide-intact, native form in Escherichia coli requires disulfide bond formation and the periplasmic space is the favourable compartment for oxidative folding. However, the secretory expression of proinsulin is limited by its high susceptibility to proteolysis and by disulfide bond formation, which is rate-limiting for proinsulin folding. In this report we describe a method for the production of high amounts of soluble, native human proinsulin in E. coli. We fused proinsulin to the C-terminus of the periplasmic disulfide oxidoreductase DsbA via a trypsin cleavage site. As DsbA is the main catalyst of disulfide bond formation in E. coli, we expected increased yields of proinsulin by intra- or intermolecular catalysis of disulfide bond formation. In the context of the fusion protein, proinsulin was found to be stabilised, probably due to an increased solubility and faster disulfide bond formation. To increase the yield of DsbA-proinsulin in the periplasm, several parameters were optimised, including host strains and cultivation conditions, and in particular growth medium composition and supplement of low molecular weight additives. We obtained a further, about three-fold increase in the amount of native DsbA-proinsulin by addition of L-arginine or ethanol to the culture medium. The maximum yield of native human proinsulin obtained from the soluble periplasmic fraction after specific cleavage of the fusion protein with trypsin was 9.2 mg g(-1), corresponding to 1.8% of the total cell protein.
Biosensors and Bioelectronics | 2004
Magdalena Gabig-Cimińska; Anders Holmgren; H Andresen; K Bundvig Barken; Mogens Wümpelmann; Jörg Albers; Rainer Hintsche; Antje Breitenstein; Peter Neubauer; Marcin Los; Agata Czyż; Grzegorz Węgrzyn; G Silfversparre; Britta Jürgen; Thomas Schweder; Sven-Olof Enfors
A silicon chip-based electric detector coupled to bead-based sandwich hybridization (BBSH) is presented as an approach to perform rapid analysis of specific nucleic acids. A microfluidic platform incorporating paramagnetic beads with immobilized capture probes is used for the bio-recognition steps. The protocol involves simultaneous sandwich hybridization of a single-stranded nucleic acid target with the capture probe on the beads and with a detection probe in the reaction solution, followed by enzyme labeling of the detection probe, enzymatic reaction, and finally, potentiometric measurement of the enzyme product at the chip surface. Anti-DIG-alkaline phosphatase conjugate was used for the enzyme labeling of the DIG-labeled detection probe. p-Aminophenol phosphate (pAPP) was used as a substrate. The enzyme reaction product, p-aminophenol (pAP), is oxidized at the anode of the chip to quinoneimine that is reduced back to pAP at the cathode. The cycling oxidation and reduction of these compounds result in a current producing a characteristic signal that can be related to the concentration of the analyte. The performance of the different steps in the assay was characterized using in vitro synthesized RNA oligonucleotides and then the instrument was used for analysis of 16S rRNA in Escherichia coli extract. The assay time depends on the sensitivity required. Artificial RNA target and 16S rRNA, in amounts ranging from 10(11) to 10(10) molecules, were assayed within 25 min and 4 h, respectively.
Journal of Biotechnology | 1996
Lena Andersson; Shaojun Yang; Peter Neubauer; Sven-Olof Enfors
Fed batch cultivations of plasmid-free and recombinant Escherichia coli were employed in order to determine cellular responses and effects of plasmid presence and induction on the host cell physiology. While plasmid presence was shown to have minor influence on overall biomass yield, induction with 0.1 mM IPTG led to a marked reduction. The number of dividing cells, measured as colony forming ability, was influenced by plasmid presence and to a larger extent by induction. The latter caused a decline in the number of dividing cells to less than 10% of the population within 10 h. However, this cell segregation did not affect the specific rate of product formation, which was approximately constant throughout the cultivations. Analysis of the in vivo degradation rate of the product indicated that it was proteolytically stable. The cellular content of the stringent response signal substance, ppGpp, peaked immediately after transition from batch to fed batch mode to stabilise at a higher value than in the batch phase. When the specific growth rate declined below 0.06 h-1 an additional rise in ppGpp concentration was observed.
Applied Microbiology and Biotechnology | 1992
Peter Neubauer; K. Hofmann; Olle Holst; Bo Mattiasson; P. Kruschke
SummaryThe use of isopropyl-β-d-thiogalactoside (IPTG) for induction of the lac-promoter in small-scale cultivations is well established. However, for large-scale microbiological processes the cost of this inducer is a severe limitation. Here is described a method by which lactose is used as inducer of the lac promoter with the same efficiency as that of IPTG. It was found that after growth on glucose the time of the addition of lactose is important for the quality of induction. the resulting yield of the recombinant protein increased when lactose was added to the culture if the glucose concentration was rather low. By careful monitoring of the glucose level in the fermentation, using a biosensor, it was possible to add the inducer when the carbon source was nearly depleted. Using Escherichia coli BL21 (pET3), in which was cloned the main antigen coat protein of the foot and mouth disease virus, induction of the gene led to expression of the target protein at a level exceeding 20% of the total cell protein.
Microbial Cell Factories | 2008
Jaakko Soini; Kaisa Ukkonen; Peter Neubauer
BackgroundFor the cultivation of Escherichia coli in bioreactors trace element solutions are generally designed for optimal growth under aerobic conditions. They do normally not contain selenium and nickel. Molybdenum is only contained in few of them. These elements are part of the formate hydrogen lyase (FHL) complex which is induced under anaerobic conditions. As it is generally known that oxygen limitation appears in shake flask cultures and locally in large-scale bioreactors, function of the FHL complex may influence the process behaviour. Formate has been described to accumulate in large-scale cultures and may have toxic effects on E. coli.Although the anaerobic metabolism of E. coli is well studied, reference data which estimate the impact of the FHL complex on bioprocesses of E. coli with oxygen limitation have so far not been published, but are important for a better process understanding.ResultsTwo sets of fed-batch cultures with conditions triggering oxygen limitation and formate accumulation were performed. Permanent oxygen limitation which is typical for shake flask cultures was caused in a bioreactor by reduction of the agitation rate. Transient oxygen limitation, which has been described to eventually occur in the feed-zone of large-scale bioreactors, was mimicked in a two-compartment scale-down bioreactor consisting of a stirred tank reactor and a plug flow reactor (PFR) with continuous glucose feeding into the PFR.In both models formate accumulated up to about 20 mM in the culture medium without addition of selenium, molybdenum and nickel. By addition of these trace elements the formate accumulation decreased below the level observed in well-mixed laboratory-scale cultures. Interestingly, addition of the extra trace elements caused accumulation of large amounts of lactate and reduced biomass yield in the simulator with permanent oxygen limitation, but not in the scale-down two-compartment bioreactor.ConclusionThe accumulation of formate in oxygen limited cultivations of E. coli can be fully prevented by addition of the trace elements selenium, nickel and molybdenum, necessary for the function of FHL complex. For large-scale cultivations, if glucose gradients are likely, the results from the two-compartment scale-down bioreactor indicate that the addition of the extra trace elements is beneficial. No negative effects on the biomass yield or on any other bioprocess parameters could be observed in cultures with the extra trace elements if the cells were repeatedly exposed to transient oxygen limitation.