Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter P. Pramstaller is active.

Publication


Featured researches published by Peter P. Pramstaller.


Nature Communications | 2015

Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis (vol 5, 4926, 2014)

Beben Benyamin; Tonu Esko; Janina S. Ried; Aparna Radhakrishnan; Sita H. Vermeulen; Michela Traglia; Martin Goegele; Denise Anderson; Linda Broer; Clara Podmore; Jian'an Luan; Zoltán Kutalik; Serena Sanna; Peter van der Meer; Toshiko Tanaka; Fudi Wang; Harm-Jan Westra; Lude Franke; Evelin Mihailov; Lili Milani; Jonas Haelldin; Juliane Winkelmann; Thomas Meitinger; Joachim Thiery; Annette Peters; Melanie Waldenberger; Augusto Rendon; Jennifer Jolley; Jennifer Sambrook; Lambertus A. Kiemeney

Corrigendum: Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis


Nature Genetics | 2009

Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts

Yurii S. Aulchenko; Samuli Ripatti; Ida Lindqvist; Dorret I. Boomsma; Iris M. Heid; Peter P. Pramstaller; Brenda W.J.H. Penninx; A. Cecile J. W. Janssens; James F. Wilson; Tim D. Spector; Nicholas G. Martin; Nancy L. Pedersen; Kirsten Ohm Kyvik; Jaakko Kaprio; Albert Hofman; Nelson B. Freimer; Marjo-Riitta Järvelin; Ulf Gyllensten; Harry Campbell; Igor Rudan; Åsa Johansson; Fabio Marroni; Caroline Hayward; Veronique Vitart; Inger Jonasson; Cristian Pattaro; Alan F. Wright; Nicholas D. Hastie; Irene Pichler; Andrew A. Hicks

Recent genome-wide association (GWA) studies of lipids have been conducted in samples ascertained for other phenotypes, particularly diabetes. Here we report the first GWA analysis of loci affecting total cholesterol (TC), low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol and triglycerides sampled randomly from 16 population-based cohorts and genotyped using mainly the Illumina HumanHap300-Duo platform. Our study included a total of 17,797–22,562 persons, aged 18–104 years and from geographic regions spanning from the Nordic countries to Southern Europe. We established 22 loci associated with serum lipid levels at a genome-wide significance level (P < 5 × 10−8), including 16 loci that were identified by previous GWA studies. The six newly identified loci in our cohort samples are ABCG5 (TC, P = 1.5 × 10−11; LDL, P = 2.6 × 10−10), TMEM57 (TC, P = 5.4 × 10−10), CTCF-PRMT8 region (HDL, P = 8.3 × 10−16), DNAH11 (LDL, P = 6.1 × 10−9), FADS3-FADS2 (TC, P = 1.5 × 10−10; LDL, P = 4.4 × 10−13) and MADD-FOLH1 region (HDL, P = 6 × 10−11). For three loci, effect sizes differed significantly by sex. Genetic risk scores based on lipid loci explain up to 4.8% of variation in lipids and were also associated with increased intima media thickness (P = 0.001) and coronary heart disease incidence (P = 0.04). The genetic risk score improves the screening of high-risk groups of dyslipidemia over classical risk factors.


PLOS Genetics | 2009

Meta-Analysis of 28,141 Individuals Identifies Common Variants within Five New Loci That Influence Uric Acid Concentrations

Melanie Kolz; Toby Johnson; Serena Sanna; Alexander Teumer; Veronique Vitart; Markus Perola; Massimo Mangino; Eva Albrecht; Chris Wallace; Martin Farrall; Åsa Johansson; Dale R. Nyholt; Yurii S. Aulchenko; Jacques S. Beckmann; Sven Bergmann; Murielle Bochud; Morris J. Brown; Harry Campbell; John M. C. Connell; Anna F. Dominiczak; Georg Homuth; Claudia Lamina; Mark I. McCarthy; Thomas Meitinger; Vincent Mooser; Patricia B. Munroe; Matthias Nauck; John F. Peden; Holger Prokisch; Perttu Salo

Elevated serum uric acid levels cause gout and are a risk factor for cardiovascular disease and diabetes. To investigate the polygenetic basis of serum uric acid levels, we conducted a meta-analysis of genome-wide association scans from 14 studies totalling 28,141 participants of European descent, resulting in identification of 954 SNPs distributed across nine loci that exceeded the threshold of genome-wide significance, five of which are novel. Overall, the common variants associated with serum uric acid levels fall in the following nine regions: SLC2A9 (p = 5.2×10−201), ABCG2 (p = 3.1×10−26), SLC17A1 (p = 3.0×10−14), SLC22A11 (p = 6.7×10−14), SLC22A12 (p = 2.0×10−9), SLC16A9 (p = 1.1×10−8), GCKR (p = 1.4×10−9), LRRC16A (p = 8.5×10−9), and near PDZK1 (p = 2.7×10−9). Identified variants were analyzed for gender differences. We found that the minor allele for rs734553 in SLC2A9 has greater influence in lowering uric acid levels in women and the minor allele of rs2231142 in ABCG2 elevates uric acid levels more strongly in men compared to women. To further characterize the identified variants, we analyzed their association with a panel of metabolites. rs12356193 within SLC16A9 was associated with DL-carnitine (p = 4.0×10−26) and propionyl-L-carnitine (p = 5.0×10−8) concentrations, which in turn were associated with serum UA levels (p = 1.4×10−57 and p = 8.1×10−54, respectively), forming a triangle between SNP, metabolites, and UA levels. Taken together, these associations highlight additional pathways that are important in the regulation of serum uric acid levels and point toward novel potential targets for pharmacological intervention to prevent or treat hyperuricemia. In addition, these findings strongly support the hypothesis that transport proteins are key in regulating serum uric acid levels.


PLOS Genetics | 2009

NRXN3 Is a Novel Locus for Waist Circumference: A Genome-Wide Association Study from the CHARGE Consortium

Nancy L. Heard-Costa; M. Carola Zillikens; Keri L. Monda; Åsa Johansson; Tamara B. Harris; Mao Fu; Talin Haritunians; Mary F. Feitosa; Thor Aspelund; Gudny Eiriksdottir; Melissa Garcia; Lenore J. Launer; Albert V. Smith; Braxton D. Mitchell; Patrick F. McArdle; Alan R. Shuldiner; Suzette J. Bielinski; Eric Boerwinkle; Fred Brancati; Ellen W. Demerath; James S. Pankow; Alice M. Arnold; Yii-Der I. Chen; Nicole L. Glazer; Barbara McKnight; Bruce M. Psaty; Jerome I. Rotter; Najaf Amin; Harry Campbell; Ulf Gyllensten

Central abdominal fat is a strong risk factor for diabetes and cardiovascular disease. To identify common variants influencing central abdominal fat, we conducted a two-stage genome-wide association analysis for waist circumference (WC). In total, three loci reached genome-wide significance. In stage 1, 31,373 individuals of Caucasian descent from eight cohort studies confirmed the role of FTO and MC4R and identified one novel locus associated with WC in the neurexin 3 gene [NRXN3 (rs10146997, p = 6.4×10−7)]. The association with NRXN3 was confirmed in stage 2 by combining stage 1 results with those from 38,641 participants in the GIANT consortium (p = 0.009 in GIANT only, p = 5.3×10−8 for combined analysis, n = 70,014). Mean WC increase per copy of the G allele was 0.0498 z-score units (0.65 cm). This SNP was also associated with body mass index (BMI) [p = 7.4×10−6, 0.024 z-score units (0.10 kg/m2) per copy of the G allele] and the risk of obesity (odds ratio 1.13, 95% CI 1.07–1.19; p = 3.2×10−5 per copy of the G allele). The NRXN3 gene has been previously implicated in addiction and reward behavior, lending further evidence that common forms of obesity may be a central nervous system-mediated disorder. Our findings establish that common variants in NRXN3 are associated with WC, BMI, and obesity.


Annals of Neurology | 2005

Lewy body Parkinson's disease in a large pedigree with 77 Parkin mutation carriers

Peter P. Pramstaller; Michael G. Schlossmacher; Ts Jacques; Francesco Scaravilli; Cordula Eskelson; Imelda Pepivani; Katja Hedrich; Susanna Adel; Melissa Gonzales‐McNeal; Rüdiger Hilker; Patricia L. Kramer; Christine Klein

We report the clinical, genetic, and neuropathological findings of a seven generation–spanning pedigree with 196 individuals, 25 of whom had levodopa‐responsive parkinsonism. Genetic analyses indicated Parkin mutations in 77 subjects. Among the 25 patients, 5 carried compound heterozygous mutations and met criteria for definite Parkinsons disease (PD) according to UK PD Society Brain Bank guidelines; 8 subjects carried only a heterozygous Parkin mutation. The mutational status of five deceased patients was unknown, and seven PD patients had no Parkin mutation. Survival analyses showed a significant difference in the age‐at‐onset distribution between patients with compound heterozygous mutations and the groups of heterozygous carriers and subjects without detectable Parkin mutations. Autopsy of a 73‐year‐old patient, who carried two mutant Parkin alleles (delExon7 + del1072T), showed PD‐type cell loss, reactive gliosis, and α‐synuclein–positive Lewy bodies in the substantia nigra and locus ceruleus. Surviving neurons were reactive with antibodies to the N terminus of Parkin but not the In‐Between‐RING (“IBR”) domain, which had been deleted by both mutations. This large Parkin pedigree represents a unique opportunity to prospectively study the role of heterozygous Parkin mutations as a PD risk factor, to identify additional contributors to the expression of late‐onset PD in heterozygous carriers, and to reexamine the role of Parkin in inclusion formation. Ann Neurol 2005;58:411–422


Annals of Neurology | 2000

Corticobasal degeneration shares a common genetic background with progressive supranuclear palsy

Emilio Di Maria; Massimo Tabaton; Tiziana Vigo; Giovanni Abbruzzese; Emilia Bellone; Catia Donati; Emma Frasson; Roberta Marchese; Pasquale Montagna; David G. Munoz; Peter P. Pramstaller; Gianluigi Zanusso; Franco Ajmar; Paola Mandich

Corticobasal degeneration is a sporadic form of tauopathy, involving the cerebral cortex and extrapyramidal motor system. A series of affected subjects was genotyped for a set of genetic markers along the tau protein gene. A specific haplotype is significantly overrepresented in patients versus controls. This haplotype is the same already reported in association with progressive supranuclear palsy. These data show that corticobasal degeneration and progressive supranuclear palsy, in addition to several clinical, pathological, and molecular features, may have the same genetic background. Ann Neurol 2000;47:374–377


PLOS Genetics | 2012

Stratifying Type 2 Diabetes Cases by BMI Identifies Genetic Risk Variants in LAMA1 and Enrichment for Risk Variants in Lean Compared to Obese Cases

John Perry; Benjamin F. Voight; Loı̈c Yengo; Najaf Amin; Josée Dupuis; Martha Ganser; Harald Grallert; Pau Navarro; Man Li; Lu Qi; Valgerdur Steinthorsdottir; Robert A. Scott; Peter Almgren; Dan E. Arking; Yurii S. Aulchenko; Beverley Balkau; Rafn Benediktsson; Richard N. Bergman; Eric Boerwinkle; Lori L. Bonnycastle; Noël P. Burtt; Harry Campbell; Guillaume Charpentier; Francis S. Collins; Christian Gieger; Todd Green; Samy Hadjadj; Andrew T. Hattersley; Christian Herder; Albert Hofman

Common diseases such as type 2 diabetes are phenotypically heterogeneous. Obesity is a major risk factor for type 2 diabetes, but patients vary appreciably in body mass index. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI<25 Kg/m2) compared to obese cases (BMI≥30 Kg/m2). We performed two case-control genome-wide studies using two accepted cut-offs for defining individuals as overweight or obese. We used 2,112 lean type 2 diabetes cases (BMI<25 kg/m2) or 4,123 obese cases (BMI≥30 kg/m2), and 54,412 un-stratified controls. Replication was performed in 2,881 lean cases or 8,702 obese cases, and 18,957 un-stratified controls. To assess the effects of known signals, we tested the individual and combined effects of SNPs representing 36 type 2 diabetes loci. After combining data from discovery and replication datasets, we identified two signals not previously reported in Europeans. A variant (rs8090011) in the LAMA1 gene was associated with type 2 diabetes in lean cases (P = 8.4×10−9, OR = 1.13 [95% CI 1.09–1.18]), and this association was stronger than that in obese cases (P = 0.04, OR = 1.03 [95% CI 1.00–1.06]). A variant in HMG20A—previously identified in South Asians but not Europeans—was associated with type 2 diabetes in obese cases (P = 1.3×10−8, OR = 1.11 [95% CI 1.07–1.15]), although this association was not significantly stronger than that in lean cases (P = 0.02, OR = 1.09 [95% CI 1.02–1.17]). For 36 known type 2 diabetes loci, 29 had a larger odds ratio in the lean compared to obese (binomial P = 0.0002). In the lean analysis, we observed a weighted per-risk allele OR = 1.13 [95% CI 1.10–1.17], P = 3.2×10−14. This was larger than the same model fitted in the obese analysis where the OR = 1.06 [95% CI 1.05–1.08], P = 2.2×10−16. This study provides evidence that stratification of type 2 diabetes cases by BMI may help identify additional risk variants and that lean cases may have a stronger genetic predisposition to type 2 diabetes.


Neurology | 2004

DJ-1 (PARK7) mutations are less frequent than Parkin (PARK2) mutations in early-onset Parkinson disease

Katja Hedrich; Ana Djarmati; Nora Schäfer; Robert Hering; Claudia Wellenbrock; P. H. Weiss; Ruediger Hilker; Peter Vieregge; Laurie J. Ozelius; Peter Heutink; Vincenzo Bonifati; Eberhard Schwinger; Anthony E. Lang; J. Noth; Susan B. Bressman; Peter P. Pramstaller; Olaf Riess; C. Klein

Background: Mutations in the Parkin gene (PARK2) are the most commonly identified cause of recessively inherited early-onset Parkinson disease (EOPD) but account for only a portion of cases. DJ-1 (PARK7) was recently reported as a second gene associated with recessively inherited PD with a homozygous exon deletion and a homozygous point mutation in two families. Methods: To investigate the frequency of DJ-1 mutations, the authors performed mutational analysis of all six coding exons of DJ-1 in 100 EOPD patients. For the detection of exon rearrangements, the authors developed a quantitative duplex PCR assay. Denaturing high performance liquid chromatography analysis was used to screen for point mutations and small deletions. Further, Parkin analysis was performed as previously described. Results: The authors identified two carriers of single heterozygous loss-of-function DJ-1 mutations, including a heterozygous deletion of exons 5 to 7 and an 11-base pair deletion, removing the invariant donor splice site in intron 5. Interestingly, both DJ-1 mutations identified in this study were found in the heterozygous state only. The authors also detected a polymorphism (R98Q) in 1.5% of the chromosomes in both the patient and control group. In the same patient sample, 17 cases were detected with mutations in the Parkin gene. Conclusions: Mutations in DJ-1 are less frequent than mutations in Parkin in EOPD patients but should be considered as a possible cause of EOPD. The effect of single heterozygous mutations in DJ-1 on the nigrostriatal system, as described for heterozygous changes in Parkin and PARK6, remains to be elucidated.


Cell | 2010

A Global In Vivo Drosophila RNAi Screen Identifies NOT3 as a Conserved Regulator of Heart Function

G. Gregory Neely; Keiji Kuba; Anthony Cammarato; Kazuya Isobe; Sabine Amann; Liyong Zhang; Mitsushige Murata; Lisa Elmén; Vaijayanti Gupta; Suchir Arora; Rinku Sarangi; Debasis Dan; Susumu Fujisawa; Takako Usami; Cui ping Xia; Alex C. Keene; Nakissa N. Alayari; Hiroyuki Yamakawa; Ulrich Elling; Christian Berger; Maria Novatchkova; Rubina Koglgruber; Keiichi Fukuda; Hiroshi Nishina; Mitsuaki Isobe; J. Andrew Pospisilik; Yumiko Imai; Arne Pfeufer; Andrew A. Hicks; Peter P. Pramstaller

Heart diseases are the most common causes of morbidity and death in humans. Using cardiac-specific RNAi-silencing in Drosophila, we knocked down 7061 evolutionarily conserved genes under conditions of stress. We present a first global roadmap of pathways potentially playing conserved roles in the cardiovascular system. One critical pathway identified was the CCR4-Not complex implicated in transcriptional and posttranscriptional regulatory mechanisms. Silencing of CCR4-Not components in adult Drosophila resulted in myofibrillar disarray and dilated cardiomyopathy. Heterozygous not3 knockout mice showed spontaneous impairment of cardiac contractility and increased susceptibility to heart failure. These heart defects were reversed via inhibition of HDACs, suggesting a mechanistic link to epigenetic chromatin remodeling. In humans, we show that a common NOT3 SNP correlates with altered cardiac QT intervals, a known cause of potentially lethal ventricular tachyarrhythmias. Thus, our functional genome-wide screen in Drosophila can identify candidates that directly translate into conserved mammalian genes involved in heart function.


Neurogenetics | 2001

Novel mutation in the TOR1A (DYT1) gene in atypical, early onset dystonia and polymorphisms in dystonia and early onset parkinsonism

Joanne Chung On Leung; Christine Klein; Jennifer Friedman; Peter Vieregge; Helfried Jacobs; Dana Doheny; Christoph Kamm; Deborah DeLeon; Peter P. Pramstaller; John B. Penney; Marvin Eisengart; Joseph Jankovic; Thomas Gasser; Susan Bressman; David P. Corey; Patricia L. Kramer; Mitchell F. Brin; Laurie J. Ozelius; Xandra O. Breakefield

Abstract. Dystonia is a movement disorder involving sustained muscle contractions and abnormal posturing with a strong hereditary predisposition and without a distinct neuropathology. In this study the TOR1A (DYT1) gene was screened for mutations in cases of early onset dystonia and early onset parkinsonism (EOP), which frequently presents with dystonic symptoms. In a screen of 40 patients, we identified three variations, none of which occurred in EOP patients. Two infrequent intronic single base pair (bp) changes of unknown consequences were found in a dystonia patient and the mother of an EOP patient. An 18-bp deletion (Phe323_Tyr328del) in the TOR1A gene was found in a patient with early onset dystonia and myoclonic features. This deletion would remove 6 amino acids close to the carboxy terminus, including a putative phosphorylation site of torsinA. This 18-bp deletion is the first additional mutation, beyond the GAG-deletion (Glu302/303del), to be found in the TOR1A gene, and is associated with a distinct type of early onset dystonia.

Collaboration


Dive into the Peter P. Pramstaller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Igor Rudan

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge