Peter Polčic
Comenius University in Bratislava
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Polčic.
FEBS Letters | 2000
Ingrid Kiššová; Peter Polčic; Petra Kempná; Igor Zeman; Ludmila Sabova; Jordan Kolarov
The effect of the expression of murine Bax protein on growth and vitality was examined in Saccharomyces cerevisiae and compared with the effect of Bax in mutant cells lacking functional mitochondria. The cytotoxic effect of Bax on yeast does not require functional oxidative phosphorylation, respiration, or mitochondrial proteins (ADP/ATP carriers) implicated in the formation of the permeability transition pore in mammalian mitochondria. In the wild type S. cerevisiae the expression of Bax does not result in a severe effect on mitochondrial membrane potential and respiration. On the basis of Bax induced differences in the fluorescence of green fluorescent protein fused to mitochondrial proteins, it is proposed that Bax may interfere with one essential cellular process in yeast: the mitochondrial protein import pathway that is specific for the proteins of the mitochondrial carrier family.
FEBS Letters | 1997
Peter Polčic; Łudmila Šabová; Jordan Kolarov
Fatty acids stimulate the oxidation rate of mitochondria isolated from the wild‐type Saccharomyces cerevisiae, but do not affect significantly the respiration of mitochondria isolated from mutants, in which the ADP/ATP carrier (AAC) was either modified (R96H) or deleted (Δaac2). Similarly as in mammalian mitochondria, the transmembrane electrical potential difference (Δψ) in the wild‐type yeast mitochondria was dissipated by low concentrations of free fatty acids, and this was partially inhibited by bongkrecate. In contrast to the wild‐type mitochondria, the addition of increasing concentrations of fatty acids to the op1 (R96H) mutant mitochondria abolished only a small portion of Δψ, as compared to the change induced by classical uncouplers. The different effects of fatty acids on both, the respiration and the Δψ of mitochondria isolated from the wild‐type and the aac mutants, respectively, demonstrates that the intact AAC is essential for the fatty acids induced H+ permeability of mitochondrial membrane.
Microbial Cell | 2018
Didac Carmona-Gutierrez; Maria A. Bauer; Andreas Zimmermann; Andrés Aguilera; Nicanor Pier Giorgio Austriaco; Kathryn R. Ayscough; Rena Balzan; Shoshana Bar-Nun; Antonio Barrientos; Peter Belenky; Marc Blondel; Ralf J. Braun; Michael Breitenbach; William C. Burhans; Sabrina Büttner; Duccio Cavalieri; Michael Chang; Katrina F. Cooper; Manuela Côrte-Real; Vitor Santos Costa; Christophe Cullin; Ian W. Dawes; Jörn Dengjel; Martin B. Dickman; Tobias Eisenberg; Birthe Fahrenkrog; Nicolas Fasel; Kai-Uwe Fröhlich; Ali Gargouri; Sergio Giannattasio
Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research.
Fems Yeast Research | 2013
Gabriela Gérecová; Jana Kopanicová; Petra Jaká; Lucia Běhalová; Barbora Juhásová; Ingrid Bhatia-Kiššová; Michael Forte; Peter Polčic; Marek Mentel
BH3-only proteins of the Bcl-2 family regulate programmed cell death in mammals through activation of multidomain proapoptotic proteins Bax and Bak in response to various proapoptotic stimuli by mechanism that remains under dispute. Here, we report that the cell death-promoting activity of BH3-only proteins Bik, Bmf, Noxa, and tBid can only be reconstituted in yeast when both multidomain proapoptotic and antiapoptotic Bcl-2 family proteins are present. Inability of these proteins to induce cell death in the absence of antiapoptotic proteins suggests that all tested BH3-only proteins likely activate Bax and Bak indirectly by inhibiting antiapoptotic proteins.
Fems Yeast Research | 2010
Juraj Laco; Igor Zeman; Vladimír Pevala; Peter Polčic; Jordan Kolarov
The mitochondrial ADP/ATP carrier (Aac2p) of Saccharomyces cerevisiae links two biochemical pathways, glycolysis in the cytosol and oxidative phosphorylation in the mitochondria, by exchanging their common substrates and products across the inner mitochondrial membrane. Recently, the product of the SAL1 gene, which is essential in cells lacking Aac2p, has been implicated in a similar communication. However, the mechanism by which Sal1p rescues the growth of Deltaaac2 mutants is not clear and it was proposed that both Sal1p and Aac2p share a common vital function other than ADP/ATP exchange. Here, the impact of SAL1 deletion on mitochondrial reactions involving either synthesis or hydrolysis of ATP was investigated. We show that adenine nucleotide transport activity related to Sal1p can be demonstrated in isolated mitochondria as well as in intact cells under conditions when Aac2-mediated exchange is not functional. Our results indicate that the vital role of both Sal1p and Aac2p is to maintain the essential intramitochondrial ATP pool owing to their ability to transport adenine nucleotides.
FEBS Letters | 2011
Barbora Juhásová; Marek Mentel; Ingrid Bhatia-Kiššová; Igor Zeman; Jordan Kolarov; Michael Forte; Peter Polčic
Proteins of the Bcl‐2 family regulate programmed cell death in mammals by promoting the release of cytochrome c from mitochondria in response to various proapoptotic stimuli. The mechanism by which BH3‐only members of the family activate multidomain proapoptotic proteins Bax and Bak to form a pore in mitochondrial membranes remains under dispute. We report that cell death promoting activity of BH3‐only protein Bim can be reconstituted in yeast when both Bax and antiapoptotic protein Bcl‐XL are present, suggesting that Bim likely activates Bax indirectly by inhibiting antiapoptotic proteins.
Folia Microbiologica | 2007
V. Pevala; Jordan Kolarov; Peter Polčic
The effect of the yeast cell-death inducing agents, Bax and acetic acid, on mitochondrial structure ofSchizosaccharomyces pombe was studied. Comparison of mitochondrial structures in cells grown on different substrates and visualized with different probes revealed variations in their morphology. Cells grown on respiratory C sources as well as in the presence of antimycin A exhibited punctuated mitochondria when visualized with mitochondrially targeted green fluorescent protein, while they still appeared as tubular structures when stained with DiOC6(3). Both expression of Bax and acetic acid treatment induced fragmentation and aggregation of mitochondrial network, which could be prevented by coexpression of Bcl-XL. Aberrant mitochondrial morphology generated by either Bax or acetic acid was not accompanied with the loss of mitochondrial genome (mtDNA), indicating that alterations of mitochondrial morphology following death stimuli follow different mechanisms than those involved in mitochondrial inheritance mutants.
Biochemical and Biophysical Research Communications | 2011
Barbora Juhásová; Ingrid Bhatia-Kiššová; Katarína Polčicová; Marek Mentel; Michael Forte; Peter Polčic
One of the mechanisms of defense against viral infection is induction of apoptosis in infected cells. To escape this line of protection, genomes of many viruses encode for proteins that inhibit apoptosis. Murid herpesvirus 4 gene M11 encodes for homologue of cellular Bcl-2 proteins that inhibits apoptosis and autophagy in infected cell. To study a role of M11 in regulation of apoptosis we have established a yeast model system in which the action of M11 together with proapoptotic proteins Bax, Bak and Bid can be studied. When expressed in yeast, M11 did not inhibit autophagic pathway, so only effects of expression of M11 on activity of coexpressed proapoptotic proteins could be observed. In this experimental setting M11 potently inhibited both proapoptotic multidomain proteins Bax and Bak. The antiapoptotic activity of M11 was suppressed by coexpression of proapoptotic BH3-only protein tBid, indicating that M11 inhibits apoptosis likely by the same mechanism as cellular antiapoptotic proteins Bcl-2 or Bcl-XL.
Fems Yeast Research | 2003
Katarína Polčicová; Petra Kempná; Ludmila Sabova; Gabriela Gavurníková; Peter Polčic; Jordan Kolarov
The import of proteins into mitochondria is an essential process, largely investigated in vitro with isolated mitochondria and radioactively labeled precursors. In this study, we used intact cells and fusions with genes encoding two reporter proteins, green fluorescent protein (GFP) and beta-galactosidase (lacZ), to probe the import of the ADP/ATP carrier (AAC). Typical mitochondrial fluorescence was observed with AAC-GFP fusions containing at least one complete transmembrane loop. This confirms the results of in vitro analysis demonstrating that an internal targeting signal was present in each one of the three transmembrane loops of the carrier. The fusions of AAC fragments to beta-galactosidase demonstrated that the targeting signal was capable of delivering the reporter molecule to the mitochondrial surface, but not to internalize it to a protease-inaccessible location. The delivery to a protease-inaccessible location required the presence of more distal sequences present within the third (C-terminal) transmembrane loop of the carrier molecule. The results of our study provide an alternative for investigation in a natural context of mitochondrial protein import in cells when the isolation of intact, functional mitochondria is not achievable.
Microbial Cell | 2015
Peter Polčic; Petra Jaká; Marek Mentel
Permeabilization of the outer mitochondrial membrane that leads to the release of cytochrome c and several other apoptogenic proteins from mitochondria into cytosol represents a commitment point of apoptotic pathway in mammalian cells. This crucial event is governed by proteins of the Bcl-2 family. Molecular mechanisms, by which Bcl-2 family proteins permeabilize mitochondrial membrane, remain under dispute. Although yeast does not have apparent homologues of these proteins, when mammalian members of Bcl-2 family are expressed in yeast, they retain their activity, making yeast an attractive model system, in which to study their action. This review focuses on using yeast expressing mammalian proteins of the Bcl-2 family as a tool to investigate mechanisms, by which these proteins permeabilize mitochondrial membranes, mechanisms, by which pro- and antiapoptotic members of this family interact, and involvement of other cellular components in the regulation of programmed cell death by Bcl-2 family proteins.