Peter Predehl
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Predehl.
Astronomy and Astrophysics | 2001
Lothar Strüder; K. Dennerl; Robert Hartmann; E. Kendziorra; Norbert Meidinger; C. Reppin; W. Bornemann; M. Elender; F. Haberl; Horst Hippmann; E. Kastelic; S. Kemmer; G. Kettenring; Walter Kink; A. Oppitz; Peter Predehl; K. H. Stephan; J. Kemmer; U. Weber; U. Weichert; D. Carathanassis; M. Kuster; Andrew D. Holland; M. J. L. Turner; M. Balasini; G. Villa; W. Buttler; P. Dhez
The European Photon Imaging Camera (EPIC) consortium has provided the focal plane instruments for the three X-ray mirror systems on XMM-Newton. Two cameras with a reflecting grating spectrometer in the optical path are equipped with MOS type CCDs as focal plane detectors (Turner 2001), the telescope with the full photon flux operates the novel pn-CCD as an imaging X-ray spectrometer. The pn-CCD camera system was developed under the leadership of the Max-Planck-Institut fur extraterrestrische Physik (MPE), Garching. The concept of the pn-CCD is described as well as the dierent operational modes of the camera system. The electrical, mechanical and thermal design of the focal plane and camera is briefly treated. The in-orbit performance is described in terms of energy resolution, quantum eciency, time resolution, long term stability and charged particle background. Special emphasis is given to the radiation hardening of the devices and the measured and expected degradation due to radiation damage of ionizing particles in the rst 9 months of in orbit operation.
The Astrophysical Journal | 2003
Stefanie Komossa; Vadim Burwitz; Guenther Hasinger; Peter Predehl; J. S. Kaastra; Yasushi Ikebe
Ultraluminous infrared galaxies (ULIRGs) are outstanding due to their huge luminosity output in the infrared, which is predominantly powered by superstarbursts and/or hidden active galactic nuclei (AGNs). NGC 6240 is one of the nearest ULIRGs and is considered a key representative of its class. Here we report the first high-resolution imaging spectroscopy of NGC 6240 in X-rays. The observation, performed with the ACIS-S detector aboard the Chandra X-Ray Observatory, led to the discovery of two hard nuclei, coincident with the optical-IR nuclei of NGC 6240. The AGN character of both nuclei is revealed by the detection of absorbed, hard, luminous X-ray emission and two strong neutral Fe Kα lines. In addition, extended X-ray emission components are present, changing their rich structure in dependence of energy. The close correlation of the extended emission with the optical Hα emission of NGC 6240, in combination with the softness of its spectrum, clearly indicates its relation to starburst-driven superwind activity.
Astronomy and Astrophysics | 1997
W. Voges; B. Aschenbach; Th. Boller; H. Bräuninger; Ulrich G. Briel; Wolfgang Burkert; Konrad Dennerl; Jakob Englhauser; Ruth Ellen Gruber; F. Haberl; Gisela D. Hartner; G. Hasinger; M. Kürster; Elmar Pfeffermann; W. Pietsch; Peter Predehl; C. Rosso; J. H. M. M. Schmitt; J. Trumper; Uwe T. Zimmermann
In order to ensure the quality of the source catalogue derived from the SASS processing an automatic as well as a visual screening procedure was applied to 1378 survey fields. Most (94%) of the 18,811 sources were confirmed by this screening process. The rest is flagged for various reasons. Broad band images are available for a subset of the flagged sources. Details of the screening process can be found at www.rosat.mpe-garching.mpg.de/survey/rass-bsc/doc.html.
The Astrophysical Journal | 2000
Albert C. Brinkman; C. J. T. Gunsing; Jelle S. Kaastra; R. L. J. van der Meer; R. Mewe; Frederik Paerels; A. J. J. Raassen; J.J. Rooijen; H. Bräuninger; Wolfgang Burkert; Vadim Burwitz; Gisela D. Hartner; Peter Predehl; J.-U. Ness; J. H. M. M. Schmitt; Jeremy J. Drake; O. Johnson; Michael Juda; Vinay L. Kashyap; S. S. Murray; Deron O. Pease; Peter W. Ratzlaff; Bradford J. Wargelin
We present the first X-ray spectrum obtained by the Low-Energy Transmission Grating Spectrometer (LETGS) aboard the Chandra X-Ray Observatory. The spectrum is of Capella and covers a wavelength range of 5-175 Å (2.5-0.07 keV). The measured wavelength resolution, which is in good agreement with ground calibration, is Deltalambda approximately 0.06 Å (FWHM). Although in-flight calibration of the LETGS is in progress, the high spectral resolution and unique wavelength coverage of the LETGS are well demonstrated by the results from Capella, a coronal source rich in spectral emission lines. While the primary purpose of this Letter is to demonstrate the spectroscopic potential of the LETGS, we also briefly present some preliminary astrophysical results. We discuss plasma parameters derived from line ratios in narrow spectral bands, such as the electron density diagnostics of the He-like triplets of carbon, nitrogen, and oxygen, as well as resonance scattering of the strong Fe xvii line at 15.014 Å.
web science | 2003
Delphine Porquet; Peter Predehl; B. Aschenbach; N. Grosso; A. Goldwurm; Paolo Goldoni; R. S. Warwick; Anne Decourchelle
We report the high S/N observation on October 3, 2002 with XMM-Newton of the brightest X-ray flare detected so far from Sgr A* with a duration shorter than one hour (~2.7 ks). The light curve is almost symmetrical with respect to the peak flare, and no significant difference between the soft and hard X-ray range is detected. The overall flare spectrum is well represented by an absorbed power-law with a soft photon spectral index of
The Astrophysical Journal | 2004
Stefanie Komossa; Jules P. Halpern; Norbert Schartel; G. Hasinger; M. Santos-Lleo; Peter Predehl
\Gamma =2.5 \pm0.3
The Astrophysical Journal | 2003
A. Goldwurm; E. Brion; Paolo Goldoni; P. Ferrando; F. Daigne; Anne Decourchelle; R. S. Warwick; Peter Predehl
, and a peak 2–10 keV luminosity of 3.6
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1993
E. Pinotti; H. Bräuninger; N. Findeis; H. Gorke; D. Hauff; Peter Holl; J. Kemmer; Peter Lechner; G. Lutz; W. Kink; Norbert Meidinger; G. Metzner; Peter Predehl; C. Reppin; L. Strüder; J. Trumper; Christoph von Zanthier; E. Kendziorra; R. Staubert; V. Radeka; P. Rehak; Giuseppe Bertuccio; E. Gatti; A. Longoni; Alberto Pullia; M. Sampietro
^{+0.3}_{-0.4}\times 10 ^{35}
The Astrophysical Journal | 2001
Frits Paerels; Albert C. Brinkman; R. L. J. van der Meer; J. S. Kaastra; Erik Kuulkers; A. J. F. den Boggende; Peter Predehl; Jeremy J. Drake; Steven M. Kahn; Daniel Wolf Savin; Brendan M. McLaughlin
erg s -1 , i.e. a factor 160 higher than the Sgr A* quiescent value. No significant spectral change during the flare is observed. This X-ray flare is very different from other bright flares reported so far: it is much brighter and softer. The present accurate determination of the flare characteristics challenge the current interpretation of the physical processes occuring inside the very close environment of Sgr A* by bringing very strong constraints for the theoretical flare models.
Optical Engineering | 2012
Christoph Braig; Peter Predehl
In recent years, indirect evidence has emerged suggesting that many nearby nonactive galaxies harbor quiescent supermassive black holes. Knowledge of the frequency of occurrence of black holes, of their masses and spins, is of broad relevance for studying black hole growth and galaxy and active galactic nuclei formation and evolution. It has been suggested that an unavoidable consequence of the existence of supermassive black holes, and the best diagnostic of their presence in nonactive galaxies, would be occasional tidal disruption of stars captured by the black holes. These events manifest themselves in the form of luminous flares powered by accretion of debris from the disrupted star into the black hole. Candidate events among optically nonactive galaxies emerged in the past few years. For the first time, we have looked with high spatial and spectral resolution at one of these most extreme variability events ever recorded among galaxies. Here we report measuring a factor of ~200 drop in luminosity of the X-ray source RX J1242-1119 with the X-ray observatories Chandra and XMM-Newton, and perform tests of the favored outburst scenario, tidal disruption of a star by a supermassive black hole. We show that the detected low-state emission has properties such that it must still be related to the flare. The power-law shaped postflare X-ray spectrum indicates a hardening compared to outburst. The inferred black hole mass, the amount of liberated energy, and the duration of the event favor an accretion event of the form expected from the (partial or complete) tidal disruption of a star.