Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter R. LaFayette is active.

Publication


Featured researches published by Peter R. LaFayette.


BMC Biotechnology | 2015

Targeted genome modifications in soybean with CRISPR/Cas9

Thomas B. Jacobs; Peter R. LaFayette; Robert J. Schmitz; Wayne A. Parrott

BackgroundThe ability to selectively alter genomic DNA sequences in vivo is a powerful tool for basic and applied research. The CRISPR/Cas9 system precisely mutates DNA sequences in a number of organisms. Here, the CRISPR/Cas9 system is shown to be effective in soybean by knocking-out a green fluorescent protein (GFP) transgene and modifying nine endogenous loci.ResultsTargeted DNA mutations were detected in 95% of 88 hairy-root transgenic events analyzed. Bi-allelic mutations were detected in events transformed with eight of the nine targeting vectors. Small deletions were the most common type of mutation produced, although SNPs and short insertions were also observed. Homoeologous genes were successfully targeted singly and together, demonstrating that CRISPR/Cas9 can both selectively, and generally, target members of gene families. Somatic embryo cultures were also modified to enable the production of plants with heritable mutations, with the frequency of DNA modifications increasing with culture time. A novel cloning strategy and vector system based on In-Fusion® cloning was developed to simplify the production of CRISPR/Cas9 targeting vectors, which should be applicable for targeting any gene in any organism.ConclusionsThe CRISPR/Cas9 is a simple, efficient, and highly specific genome editing tool in soybean. Although some vectors are more efficient than others, it is possible to edit duplicated genes relatively easily. The vectors and methods developed here will be useful for the application of CRISPR/Cas9 to soybean and other plant species.


Plant Molecular Biology | 1990

Structure and expression of two auxin-inducible genes from Arabidopsis.

Timothy W. Conner; Virginia H. Goekjian; Peter R. LaFayette; Joe L. Key

Two genes from Arabidopsis thaliana related to the auxin-inducible Aux28 and Aux22 genes of soybean have been isolated. These genes belong to a small multi-gene family and are similar to the soybean Aux gene family in the sequence of the predicted proteins, intron/exon locations, and auxin-enhanced expression of their transcripts. Application of auxin to 8-day old Arabidopsis plants, 4-day old etiolated seedlings, and suspension culture cells all resulted in enhanced Aux transcript levels. Comparison of the promoter sequences from the soybean and Arabidopsis genes yielded no significant sequence conservation; however, three regions of near sequence identity are present between the two Arabidopsis Aux genes.


Plant Cell Reports | 2008

Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa.

Pierluigi Barone; Daniele Rosellini; Peter R. LaFayette; Joseph H. Bouton; Fabio Veronesi; Wayne A. Parrott

Alfalfa is very sensitive to soil acidity and its yield and stand duration are compromised due to inhibited root growth and reduced nitrogen fixation caused by Al toxicity. Soil improvement by liming is expensive and only partially effective, and conventional plant breeding for Al tolerance has had limited success. Because tobacco and papaya plants overexpressing Pseudomonas aeruginosa citrate synthase (CS) have been reported to exhibit enhanced tolerance to Al, alfalfa was engineered by introducing the CS gene controlled by the Arabidopsis Act2 constitutive promoter or the tobacco RB7 root-specific promoter. Fifteen transgenic plants were assayed for exclusion of Al from the root tip, for internal citrate content, for growth in in vitro assays, or for shoot and root growth in either hydroponics or in soil assays. Overall, only the soil assays yielded consistent results. Based on the soil assays, two transgenic events were identified that were more aluminum-tolerant than the non-transgenic control, confirming that citrate synthase overexpression can be a useful tool to help achieve aluminum tolerance.


Plant Biotechnology Journal | 2012

Gateway-compatible vectors for high-throughput gene functional analysis in switchgrass (Panicum virgatum L.) and other monocot species

David G. J. Mann; Peter R. LaFayette; Laura L. Abercrombie; Zachary R. King; Mitra Mazarei; Mathew Halter; Charleson R. Poovaiah; Holly L. Baxter; Hui Shen; Richard A. Dixon; Wayne A. Parrott; C. Neal Stewart

Switchgrass (Panicum virgatum L.) is a C4 perennial grass and has been identified as a potential bioenergy crop for cellulosic ethanol because of its rapid growth rate, nutrient use efficiency and widespread distribution throughout North America. The improvement of bioenergy feedstocks is needed to make cellulosic ethanol economically feasible, and genetic engineering of switchgrass is a promising approach towards this goal. A crucial component of creating transgenic switchgrass is having the capability of transforming the explants with DNA sequences of interest using vector constructs. However, there are limited options with the monocot plant vectors currently available. With this in mind, a versatile set of Gateway-compatible destination vectors (termed pANIC) was constructed to be used in monocot plants for transgenic crop improvement. The pANIC vectors can be used for transgene overexpression or RNAi-mediated gene suppression. The pANIC vector set includes vectors that can be utilized for particle bombardment or Agrobacterium-mediated transformation. All the vectors contain (i) a Gateway cassette for overexpression or silencing of the target sequence, (ii) a plant selection cassette and (iii) a visual reporter cassette. The pANIC vector set was functionally validated in switchgrass and rice and allows for high-throughput screening of sequences of interest in other monocot species as well.


Plant Molecular Biology | 1993

Isolation and characterization of three families of auxin down-regulated cDNA clones

Neeraj Datta; Peter R. LaFayette; Philip A. Kroner; Ronald T. Nagao; Joe L. Key

Five cDNA clones (ADR6, ADR11-1, ADR11-2, ADR12-1 and ADR12-2), representing three families of auxin down-regulated (ADR) genes were isolated and characterized. These were isolated by screening a λZap cDNA library with the partial cDNA clones p6, p11 and p12, isolated earlier (Baulcombe and Key, J Biol Chem 255: 8907–8913, 1980). Hybrid-select translation of ADR6, ADR11-2 and ADR12-2 clones produced polypeptides of 33 kDa 22.5 kDa and a 6 and 7 kDa respectively, when analyzed by SDS-PAGE. ADR6 and ADR12-2 gave one and two spots, respectively, on an IEF-SDS 2D gel. ADR11-2 probably encodes a basic protein as it was only resolved on non-equilibrium pH gradient gel electrophoresis (NEPHGE). Genomic Southern blot analysis of ADR6, ADR11 and ADR12 suggests that each represents a small multigene family. The RNA levels corresponding to ADR6, ADR11 and ADR12 decrease in response to applied auxin by 100-, 15- and 10-fold, respectively (Baulcombe and Key, 1980). Runoff transcription, done in the presence and absence of auxin, showed that the rate of transcription of the genes corresponding to ADR6, ADR11-2 and ADR12-2 was reduced in the presence of auxin, but the decrease was small relative to the decrease in the cytoplasmic levels of these mRNAs, in response to auxin. A comparative analysis of the influence of auxin on in vitro transcription and steady state RNA levels corresponding to these ADR cDNAs suggests that the decrease in rate of transcription due to auxin is not enough to account for the auxin-induced decrease in the steady state levels. Northern analysis showed developmental and organ/tissue-specific response of these ADR genes. Furthermore, the expression of the genes corresponding to ADR6 and ADR12-1 appears to be upregulated by light, whereas the gene corresponding to ADR11 appears to be down-regulated by light.


Plant Physiology | 1995

Nucleotide Sequence of a cDNA Clone Encoding an Acidic Laccase from Sycamore Maple (Acer pseudoplatanus L.)

Peter R. LaFayette; Karl-Erik Eriksson; Jeffrey F. D. Dean

Laccases (p-diphenol:O, oxidoreductase, EC 1.1 0.3.2) are m,embers of a highly conserved class of metalloenzymes, the ”blue” copper oxidases, which includes ascorbate oxidase and ceruloplasmin (Rydén and Hunt, 1993). First identified more than 100 years ago in extracts of sap from the Japanese lacquer tree (Rhus vernicifera), laccases have since been identified in fungi, insects, higher plants, and bacteria (Dean and Eriksson, 1994). Although the physiological roles played by laccases in these various organisms are for the most part poorly understood, the enzymes generally oxidize diphenol or dinaphthol metabolites with subsequent reduction of O, to H,O. The oxidized aromatic products of these reactions often polymerize with each other or with molecules in the surrounding extracellular ma t r i x t o form chemically resil ient structures that serve to protect the organism from various environmental stresses. Plant laccases were first proposed to play a role in lignin biosynthesis after Freudenberg et al. (1958) demonstrated that a fungal laccase could oxidize coniferyl alcohol in vitro with subsequent formation of a lignin-like dehydrogenation polymer. However, studies demonstrating that laccase purified from R. vernicifera could not oxidize coniferyl alcohol (Nakamura, 1967) and that laccase activity could not be detected histochemically in tissue sections taken from lignifying tree stems (Harkin and Obst, 1973) led to the conclusion that peroxidases, not laccases, catalyzed the final step in lignin deposition. More recent studies have suggested that such a conclusion was likely premature (Dean and Eriksson, 1994). Suspension-cultured cells of Acer psuedoplatanus secrete large quantities of a laccase capable of polymerizing lignin precursors (Sterjiades et al., 1992), and immunolocalization studies have shown that this enzyme is localized to the cell wall of lignifying vascular tissues in Acer stems (Driouich et al., 1992). A cDNA clone encoding this laccase was isolated through PCR-based screening (Israel, 1993) of a A phage library. Degenerate oligonucleotide probes were based on the amino acid sequence of conserved copper-


Plant Physiology | 2011

The Rice Miniature Inverted Repeat Transposable Element mPing Is an Effective Insertional Mutagen in Soybean

C. Nathan Hancock; Feng Zhang; Kristen Floyd; Aaron O. Richardson; Peter R. LaFayette; Donna Tucker; Susan R. Wessler; Wayne A. Parrott

Insertional mutagenesis of legume genomes such as soybean (Glycine max) should aid in identifying genes responsible for key traits such as nitrogen fixation and seed quality. The relatively low throughput of soybean transformation necessitates the use of a transposon-tagging strategy where a single transformation event will produce many mutations over a number of generations. However, existing transposon-tagging tools being used in legumes are of limited utility because of restricted transposition (Ac/Ds: soybean) or the requirement for tissue culture activation (Tnt1: Medicago truncatula). A recently discovered transposable element from rice (Oryza sativa), mPing, and the genes required for its mobilization, were transferred to soybean to determine if it will be an improvement over the other available transposon-tagging tools. Stable transformation events in soybean were tested for mPing transposition. Analysis of mPing excision at early and late embryo developmental stages revealed increased excision during late development in most transgenic lines, suggesting that transposition is developmentally regulated. Transgenic lines that produced heritable mPing insertions were identified, with the plants from the highest activity line producing at least one new insertion per generation. Analysis of the mPing insertion sites in the soybean genome revealed that features displayed in rice were retained including transposition to unlinked sites and a preference for insertion within 2.5 kb of a gene. Taken together these findings indicate that mPing has the characteristics necessary for an effective transposon-tagging resource.


Plant Molecular Biology | 1996

Molecular characterization of cDNAs encoding low-molecular-weight heat shock proteins of soybean.

Peter R. LaFayette; Ronald T. Nagao; Kevin O'Grady; Elizabeth Vierling; Joe L. Key

Three cDNA clones (GmHSP23.9, GmHSP22.3, and GmHSP22.5) representing three different members of the low-molecular-weight (LMW) heat shock protein (HSP) gene superfamily were isolated and characterized. A fourth cDNA clone, pFS2033, was partially characterized previously as a full-length genomic clone GmHSP22.0. The deduced amino acid sequences of all four cDNA clones have the conserved carboxyl-terminal LMW HSP domain. Sequence and hydropathy analyses of GmHSP22, GmHSP22.3, and GmHSP22.5, representing HSPs in the 20 to 24 kDa range, indicate they contain amino-terminal signal peptides. The mRNAs from GmHSP22, GmHSP22.3, and GmHSP22.5 were preferentially associated in vivo with endoplasmic reticulum (ER)-bound polysomes. GmHSP22 and GmHSP22.5 encode strikingly similar proteins; they are 78% identical and 90% conserved at the amino acid sequence level, and both possess the C-terminal tetrapeptide KQEL which is similar to the consensus ER retention motif KDEL; the encoded polypeptides can be clearly resolved from each other by two-dimensional gel analysis of their hybrid-arrest translation products. GmHSP22.3 is less closely related to GmHSP22 (48% identical and 70% conserved) and GmHSP22.5 (47% identical and 65% conserved). The fourth cDNA clone, GmHSP23.9, encodes a HSP of ca. 24kDa with an amino terminus that has characteristics of some mitochondrial transit sequences, and in contrast to GmHSP22, GmHSP22.3, and GmHSP22.5, the corresponding mRNA is preferentially associated in vivo with free polysomes. It is proposed that the LMW HSP gene superfamily be expanded to at least six classes to include a mitochondrial class and an additional endomembrane class of LMW HSPs.


In Vitro Cellular & Developmental Biology – Plant | 2008

A comparison of strategies for transformation with multiple genes via microprojectile-mediated bombardment

Monica A. Schmidt; Peter R. LaFayette; B. A. Artelt; Wayne A. Parrott

The stable insertion and expression of multiple transgenes in crops is highly desirable, as the manipulation of complex agronomic traits and the introduction of novel biosynthetic pathways are dependent upon it. This study was performed to explore the frequency and efficiency of introducing multiple genes in soybean by using somatic embryogenesis and microprojectile bombardment transformation. The co-transformation frequency of six selectable marker or reporter genes (GusA, bleomycin resistance, glufosinate resistance, hygromycin resistance, green fluorescent protein, and kanamycin resistance) were followed throughout the T0, T1, and T2 generations. Three bombardment strategies were compared to determine the best method to generate transgenic plants that express the introduced transgenes and have a simple insertion pattern that would facilitate any downstream breeding. The plasmid bombardment treatments were (1) a six-gene-containing plasmid, (2) an equimolar treatment of five individual plasmids that collectively contained the six transgenes of interest (genes of glufosinate and hygromycin resistance were on the same plasmid), and (3) a 1:9 ratio mixture of the five plasmids, in which the plasmid containing the selectable marker used in the regeneration process, hygromycin resistance, was used in ninefold excess to all the other plasmids. Of the six bombardments performed per plasmid treatment, the results of seven independent events for the six-gene plasmid, four events for the 1:9 treatment, and a single regenerated event for the equimolar treatment indicate that containing all the transgenes on one plasmid just had an advantage in terms of frequency of a successful transformation events. Based on Southern analysis, the only events that contained all six transgenes was the one obtained by the equimolar treatment. No event was obtained that expressed all six transgenes, and certain transgenes seem to be non-randomly lost, namely gusA, bleomycin resistance, and glufosinate resistance, regardless of treatment. The addition of elements to optimize the expression of each gene cassette when multiple genes are in close proximity needs to be further investigated.


Plant Cell Reports | 2005

Arabitol dehydrogenase as a selectable marker for rice

Peter R. LaFayette; P. M. Kane; Bao H. Phan; Wayne A. Parrott

Arabitol dehydrogenase has been adapted for use as a plant selectable marker. Arabitol is a five-carbon sugar alcohol that can be used by E. coli strain C, but not by the laboratory K12 strains. The enzyme converts the non-plant-metabolizable sugar arabitol into xylulose, which is metabolized by plant cells. Rice was transformed with a plant-expression-optimized synthetic gene using Biolistic-mediated transformation. Selection on 2.75% arabitol and 0.25% sucrose yielded a transformation efficiency (9.3%) equal to that obtained with hygromycin (9.2%). Molecular analyses showed that the atlD gene was integrated into the rice genome of selected plants and was inherited in a Mendelian manner. This study indicates that arabitol could serve as an effective means of plant selection.

Collaboration


Dive into the Peter R. LaFayette's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth Vierling

University of Massachusetts Amherst

View shared research outputs
Researchain Logo
Decentralizing Knowledge