Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Rankin McCullough is active.

Publication


Featured researches published by Peter Rankin McCullough.


Proceedings of SPIE | 2014

Transiting Exoplanet Survey Satellite (TESS)

George R. Ricker; Joshua N. Winn; R. Vanderspek; David W. Latham; G. Á. Bakos; Jacob L. Bean; Zachory K. Berta-Thompson; Timothy M. Brown; Lars A. Buchhave; Nathaniel R. Butler; R. Paul Butler; W. J. Chaplin; David Charbonneau; Jørgen Christensen-Dalsgaard; Mark Clampin; Drake Deming; John P. Doty; Nathan De Lee; Courtney D. Dressing; Edward W. Dunham; Michael Endl; Francois Fressin; Jian Ge; Thomas Henning; Matthew J. Holman; Andrew W. Howard; Shigeru Ida; Jon M. Jenkins; Garrett Jernigan; John Asher Johnson

The Transiting Exoplanet Survey Satellite (TESS ) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its two-year mission, TESS will employ four wide-field optical CCD cameras to monitor at least 200,000 main-sequence dwarf stars with IC (approximately less than) 13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from one month to one year, depending mainly on the stars ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10-100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every four months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.


The Astrophysical Journal | 2012

THE FLAT TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ1214B FROM WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE

Zachory K. Berta; David Charbonneau; J.-M. Desert; Eliza Miller-Ricci Kempton; Peter Rankin McCullough; Christopher J. Burke; Jonathan J. Fortney; J. Irwin; Philip Nutzman; Derek Homeier

Capitalizing on the observational advantage oered by its tiny M dwarf host, we present HST/WFC3 grism measurements of the transmission spectrum of the super-Earth exoplanet GJ1214b. These are the rst published WFC3 observations of a transiting exoplanet atmosphere. After correcting for a ramp-like instrumental systematic, we achieve nearly photon-limited precision in these observations, nding the transmission spectrum of GJ1214b to be at between 1.1 and 1.7 m. Inconsistent with a cloud-free solar composition atmosphere at 8:2 , the measured achromatic transit depth most likely implies a large mean molecular weight for GJ1214b’s outer envelope. A dense atmosphere rules out bulk compositions for GJ1214b that explain its large radius by the presence of a very low density gas layer surrounding the planet. High-altitude clouds can alternatively explain the at transmission spectrum, but they would need to be optically thick up to 10 mbar or consist of particles with a range of sizes approaching 1 m in diameter. Subject headings: planetary systems: individual (GJ 1214b) | eclipses | techniques: spectroscopic


The Astrophysical Journal | 2008

The Transit Light Curve Project. IX. Evidence for a Smaller Radius of the Exoplanet XO-3b

Joshua N. Winn; Matthew J. Holman; Guillermo Torres; Peter Rankin McCullough; Christopher M. Johns-Krull; David W. Latham; Avi Shporer; Tsevi Mazeh; Enrique Garcia-Melendo; Cindy N. Foote; Gil Esquerdo; Mark E. Everett

We present photometry of 13 transits of XO-3b, a massive transiting planet on an eccentric orbit. Previous data led to two inconsistent estimates of the planetary radius. Our data strongly favor the smaller radius, with increased precision: Rp = 1.217 ± 0.073 RJup. A conflict remains between the mean stellar density determined from the light curve, and the stellar surface gravity determined from the shapes of spectral lines. We argue the light curve should take precedence, and revise the system parameters accordingly. The planetary radius is about 1 σ larger than the theoretical radius for a hydrogen-helium planet of the given mass and insolation. To help in planning future observations, we provide refined transit and occultation ephemerides.


The Astrophysical Journal | 2013

Infrared Transmission Spectroscopy of the Exoplanets HD 209458b and XO-1b Using the Wide Field Camera-3 on the Hubble Space Telescope

Drake Deming; Ashlee Wilkins; Peter Rankin McCullough; Adam Burrows; Jonathan J. Fortney; Eric Agol; Ian Dobbs-Dixon; Nikku Madhusudhan; Nicolas Crouzet; J.-M. Desert; Ronald L. Gilliland; Korey Haynes; Heather A. Knutson; Michael R. Line; Zazralt Magic; Avi M. Mandell; Sukrit Ranjan; David Charbonneau; Mark Clampin; Sara Seager

Exoplanetary transmission spectroscopy in the near-infrared using the Hubble Space Telescope (HST) NICMOS is currently ambiguous because different observational groups claim different results from the same data, depending on their analysis methodologies. Spatial scanning with HST/WFC3 provides an opportunity to resolve this ambiguity. We here report WFC3 spectroscopy of the giant planets HD 209458b and XO-1b in transit, using spatial scanning mode for maximum photon-collecting efficiency. We introduce an analysis technique that derives the exoplanetary transmission spectrum without the necessity of explicitly decorrelating instrumental effects, and achieves nearly photon-limited precision even at the high flux levels collected in spatial scan mode. Our errors are within 6% (XO-1) and 26% (HD 209458b) of the photon-limit at a resolving power of λ/δλ ~ 70, and are better than 0.01% per spectral channel. Both planets exhibit water absorption of approximately 200 ppm at the water peak near 1.38 μm. Our result for XO-1b contradicts the much larger absorption derived from NICMOS spectroscopy. The weak water absorption we measure for HD 209458b is reminiscent of the weakness of sodium absorption in the first transmission spectroscopy of an exoplanet atmosphere by Charbonneau et al. Model atmospheres having uniformly distributed extra opacity of 0.012 cm2 g−1 account approximately for both our water measurement and the sodium absorption. Our results for HD 209458b support the picture advocated by Pont et al. in which weak molecular absorptions are superposed on a transmission spectrum that is dominated by continuous opacity due to haze and/or dust. However, the extra opacity needed for HD 209458b is grayer than for HD 189733b, with a weaker Rayleigh component.


Journal of Astronomical Telescopes, Instruments, and Systems | 2014

Transiting Exoplanet Survey Satellite

George R. Ricker; Joshua N. Winn; R. Vanderspek; David W. Latham; G. Á. Bakos; Jacob L. Bean; Zachory K. Berta-Thompson; Timothy M. Brown; Lars A. Buchhave; Nathaniel R. Butler; R. Paul Butler; W. J. Chaplin; David Charbonneau; Jørgen Christensen-Dalsgaard; Mark Clampin; Drake Deming; John P. Doty; Nathan De Lee; Courtney D. Dressing; Edward W. Dunham; Michael Endl; Francois Fressin; Jian Ge; Thomas Henning; Matthew J. Holman; Andrew W. Howard; Shigeru Ida; Jon M. Jenkins; Garrett Jernigan; John Asher Johnson

Abstract. The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its 2-year mission, TESS will employ four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars with IC≈4−13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from 1 month to 1 year, depending mainly on the star’s ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10 to 100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every 4 months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.


The Astrophysical Journal | 2008

XO-3b: A Massive Planet in an Eccentric Orbit Transiting an F5 V Star

Christopher M. Johns-Krull; Peter Rankin McCullough; Christopher J. Burke; Jeff A. Valenti; Kenneth A. Janes; James N. Heasley; L. Prato; R. Bissinger; Michael L. Fleenor; Cindy N. Foote; Enrique Garcia-Melendo; Bruce L. Gary; P. J. Howell; F. Mallia; Gianluca Masi; Tonny Vanmunster

We report the discovery of a massive planet (Mpsin i = 13.02 ± 0.64 MJ; total mass = 13.25 ± 0.64 MJ), large (1.95 ± 0.16 RJ) planet in a transiting, eccentric orbit (e = 0.260 ± 0.017) around a 10th magnitude F5 V star in the constellation Camelopardalis. We designate the planet XO-3b and the star XO-3, also known as GSC 03727–01064. The orbital period of XO-3b is 3.1915426 ± 0.00014 days. XO-3 lacks a trigonometric parallax; we estimate its distance to be 260 ± 23 pc. The radius of XO-3 is 2.13 ± 0.21 R☉, its mass is 1.41 ± 0.08 M☉, its vsin i = 18.54 ± 0.17 km s−1, and its metallicity is [ Fe/H ] = − 0.177 ± 0.027. This system is unusual for a number of reasons. XO-3b is one of the most massive planets discovered around any star for which the orbital period is less than 10 days. The mass is near the deuterium-burning limit of 13 MJ, which is a proposed boundary between planets and brown dwarfs. Although Burrows et al. propose that formation in a disk or formation in the interstellar medium in a manner similar to stars is a more logical way to differentiate planets and brown dwarfs, our current observations are not adequate to address this distinction. XO-3b is also unusual in that its eccentricity is large given its relatively short orbital period. Both the planetary radius and the inclination are functions of the spectroscopically determined stellar radius. Analysis of the transit light curve of XO-3b suggests that the spectroscopically derived parameters may be overestimated. Though relatively noisy, the light curves favor a smaller radius in order to better match the steepness of the ingress and egress. The light curve fits imply a planetary radius of 1.25 ± 0.15 RJ, which would correspond to a mass of 12.03 ± 0.46 MJ. A precise trigonometric parallax measurement or a very accurate light curve is needed to resolve the uncertainty in the planetary mass and radius.


The Astrophysical Journal | 2015

The Transiting Exoplanet Survey Satellite: Simulations of Planet Detections and Astrophysical False Positives

Peter W. Sullivan; Joshua N. Winn; Zachory K. Berta-Thompson; David Charbonneau; Drake Deming; Courtney D. Dressing; David W. Latham; Alan M. Levine; Peter Rankin McCullough; Timothy D. Morton; George R. Ricker; Roland Kraft Vanderspek; Deborah F. Woods

The Transiting Exoplanet Survey Satellite (TESS) is a NASA-sponsored Explorer mission that will perform a wide-field survey for planets that transit bright host stars. Here, we predict the properties of the transiting planets that TESS will detect along with the eclipsing binary stars that produce false-positive photometric signals. The predictions are based on Monte Carlo simulations of the nearby population of stars, occurrence rates of planets derived from Kepler, and models for the photometric performance and sky coverage of the TESS cameras. We expect that TESS will find approximately 1700 transiting planets from 200,000 pre-selected target stars. This includes 556 planets smaller than twice the size of Earth, of which 419 are hosted by M dwarf stars and 137 are hosted by FGK dwarfs. Approximately 130 of the


The Astrophysical Journal | 2014

Water vapor in the spectrum of the extrasolar planet HD 189733b. I. The transit

Peter Rankin McCullough; Nicolas Crouzet; Drake Deming; Nikku Madhusudhan

R < 2~R_\oplus


The Astrophysical Journal | 2014

A precise water abundance measurement for the hot Jupiter WASP-43b

Laura Kreidberg; Jacob L. Bean; Jean-Michel Desert; Michael R. Line; Jonathan J. Fortney; Nikku Madhusudhan; Kevin B. Stevenson; David Charbonneau; Peter Rankin McCullough; Sara Seager; Adam Burrows; Gregory W. Henry; Michael H. Williamson; Tiffany Kataria; Derek Homeier

planets will have host stars brighter than K = 9. Approximately 48 of the planets with


The Astrophysical Journal | 2014

Kepler-413b: A Slightly Misaligned, Neptune-size Transiting Circumbinary Planet

Veselin Kostov; Peter Rankin McCullough; Joshua A. Carter; Magali Deleuil; R. F. Diaz; Daniel C. Fabrycky; G. Hébrard; T. C. Hinse; Tsevi Mazeh; Jerome A. Orosz; Zlatan I. Tsvetanov; William F. Welsh

R < 2~R_\oplus

Collaboration


Dive into the Peter Rankin McCullough's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeff A. Valenti

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. N. Hilbert

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wayne Rosing

Las Cumbres Observatory Global Telescope Network

View shared research outputs
Researchain Logo
Decentralizing Knowledge