Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter S. DiStefano is active.

Publication


Featured researches published by Peter S. DiStefano.


Nature Immunology | 2004

Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island.

Jérôme Viala; Catherine Chaput; Ivo Gomperts Boneca; Ana Cardona; Stephen E. Girardin; Anthony P. Moran; Rafika Athman; Sylvie Mémet; Michel R Huerre; Anthony J. Coyle; Peter S. DiStefano; Philippe J. Sansonetti; Agnes Labigne; John Bertin; Dana J. Philpott; Richard Ferrero

Epithelial cells can respond to conserved bacterial products that are internalized after either bacterial invasion or liposome treatment of cells. We report here that the noninvasive Gram-negative pathogen Helicobacter pylori was recognized by epithelial cells via Nod1, an intracellular pathogen-recognition molecule with specificity for Gram-negative peptidoglycan. Nod1 detection of H. pylori depended on the delivery of peptidoglycan to host cells by a bacterial type IV secretion system, encoded by the H. pylori cag pathogenicity island. Consistent with involvement of Nod1 in host defense, Nod1-deficient mice were more susceptible to infection by cag pathogenicity island–positive H. pylori than were wild-type mice. We propose that sensing of H. pylori by Nod1 represents a model for host recognition of noninvasive pathogens.


Trends in Neurosciences | 1994

Neurotrophic factors: from molecule to man

Ronald M. Lindsay; Stanley J. Wiegand; C. Anthony Altar; Peter S. DiStefano

Recent advances in the understanding of the physiological role of nerve growth factor (NGF) have raised the question of whether neurotrophic factors might have clinical potential in the treatment of neurodegenerative disease or nerve trauma. Although NGF was first characterized as a target-derived survival factor for developing sympathetic and sensory neurons, it is now clear that it plays an important role in the maintenance and regeneration of mature peripheral neurons. However, the highly restricted specificity of NGF for sympathetic neurons, subpopulations of neural-crest-derived sensory neurons, and striatal and basal forebrain cholinergic neurons has, for almost two decades, stimulated the search for other neurotrophic factors that might act on the many classes of neurons that do not respond to NGF. In this article, the biology of the recently discovered NGF-related family of neurotrophic factors and ciliary neurotrophic factor and their receptors are reviewed, especially in the context of the therapeutic potential of these factors in the treatment of neurological disorders of the CNS.


Cell | 1996

The Receptor Tyrosine Kinase MuSK Is Required for Neuromuscular Junction Formation In Vivo

Thomas M. DeChiara; David C. Bowen; David M. Valenzuela; Mary V. Simmons; William Poueymirou; Susan Thomas; Erika Kinetz; Debra L Compton; Eduardo Rojas; John S. Park; Cynthia L. Smith; Peter S. DiStefano; David J. Glass; Steven J. Burden; George D. Yancopoulos

Formation of neuromuscular synapses requires a series of inductive interactions between growing motor axons and differentiating muscle cells, culminating in the precise juxtaposition of a highly specialized nerve terminal with a complex molecular structure on the postsynaptic muscle surface. The receptors and signaling pathways mediating these inductive interactions are not known. We have generated mice with a targeted disruption of the gene encoding MuSK, a receptor tyrosine kinase selectively localized to the postsynaptic muscle surface. Neuromuscular synapses do not form in these mice, suggesting a failure in the induction of synapse formation. Together with the results of an accompanying manuscript, our findings indicate that MuSK responds to a critical nerve-derived signal (agrin), and in turn activates signaling cascades responsible for all aspects of synapse formation, including organization of the postsynaptic membrane, synapse-specific transcription, and presynaptic differentiation.


Cell | 1991

trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor

Stephen P. Squinto; Trevor N. Stitt; Thomas H. Aldrich; Samuel Davis; Stella M. Blanco; Czeslaw Radziejewski; David J. Glass; Piotr Masiakowski; Mark E. Furth; David M. Valenzuela; Peter S. DiStefano; George D. Yancopoulos

A variety of findings seem to functionally link brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), while distinguishing both of these factors from the third member of the neurotrophin family, nerve growth factor (NGF). Here we demonstrate that all three of these neuronal survival molecules bind similarly to the low affinity NGF receptor, but that BDNF and NT-3, unlike NGF, do not act via the high affinity NGF receptor. However, both BDNF and NT-3, but not NGF, bind to full-length and truncated forms of a receptor-like tyrosine kinase, trkB, for which no ligand had previously been identified. In addition to binding BDNF and NT-3, trkB can mediate functional responses to both of these neurotrophins when it is expressed in PC12 cells, although BDNF appears to be the more effective ligand. Thus trkB encodes an essential component of a functional receptor for BDNF and NT-3, but not for NGF. Further evidence predicts the existence of additional functional receptors for the neurotrophins.


Neuron | 1992

The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons

Peter S. DiStefano; Beth Friedman; Czeslaw Radziejewski; Charles Alexander; Patricia Boland; Christine M. Schick; Ronald M. Lindsay; Stanley J. Wiegand

The pattern of retrograde axonal transport of the target-derived neurotrophic molecule, nerve growth factor (NGF), correlates with its trophic actions in adult neurons. We have determined that the NGF-related neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), are also retrogradely transported by distinct populations of peripheral and central nervous system neurons in the adult. All three 125I-labeled neurotrophins are retrogradely transported to sites previously shown to contain neurotrophin-responsive neurons as assessed in vitro, such as dorsal root ganglion and basal forebrain neurons. The patterns of transport also indicate the existence of neuronal populations that selectively transport NT-3 and/or BDNF, but not NGF, such as spinal cord motor neurons, neurons in the entorhinal cortex, thalamus, and neurons within the hippocampus itself. Our observations suggest that neurotrophins are transported by overlapping as well as distinct populations of neurons when injected into a given target field. Retrograde transport may thus be predictive of neuronal types selectively responsive to either BDNF or NT-3 in the adult, as first demonstrated for NGF.


Nature | 2002

TRPV3 is a calcium-permeable temperature-sensitive cation channel.

Haoxing Xu; I. Scott Ramsey; Suhas Kotecha; Magdalene M. Moran; Jayhong A. Chong; Deborah Lawson; Pei Ge; Jeremiah Lilly; Inmaculada Silos-Santiago; Yu Xie; Peter S. DiStefano; Rory A. J. Curtis; David E. Clapham

Transient receptor potential (TRP) proteins are cation-selective channels that function in processes as diverse as sensation and vasoregulation. Mammalian TRP channels that are gated by heat and capsaicin (>43 °C; TRPV1 (ref. 1)), noxious heat (>52 °C; TRPV2 (ref. 2)), and cooling (< 22 °C; TRPM8 (refs 3, 4)) have been cloned; however, little is known about the molecular determinants of temperature sensing in the range between ∼22 °C and 40 °C. Here we have identified a member of the vanilloid channel family, human TRPV3 (hTRPV3) that is expressed in skin, tongue, dorsal root ganglion, trigeminal ganglion, spinal cord and brain. Increasing temperature from 22 °C to 40 °C in mammalian cells transfected with hTRPV3 elevated intracellular calcium by activating a nonselective cationic conductance. As in published recordings from sensory neurons, the current was steeply dependent on temperature, sensitized with repeated heating, and displayed a marked hysteresis on heating and cooling. On the basis of these properties, we propose that hTRPV3 is thermosensitive in the physiological range of temperatures between TRPM8 and TRPV1.


Cell | 1996

Agrin Acts via a MuSK Receptor Complex

David J. Glass; David C. Bowen; Trevor N. Stitt; Czeslaw Radziejewski; Joanne Bruno; Terence E. Ryan; David R. Gies; Sonal Shah; Karen Mattsson; Steven J. Burden; Peter S. DiStefano; David M. Valenzuela; Thomas M. DeChiara; George D. Yancopoulos

Formation of th neuromuscular junction depends upon reciprocal inductive interactions between the developing nerve and muscle, resulting in the precise juxtaposition of a differentiated nerve terminal with a highly specialized patch on the muscle membrane, termed the motor endplate. Agrin is a nerve-derived factor that can induced molecular reorganizations at the motor endplate, but the mechanism of action of agrin remains poorly understood. MuSK is a receptor tyrosine kinase localized to the motor endplate, seemingly well positioned to receive a key nerve-derived signal. Mice lacking either agrin or MuSK have recently been generated and exhibit similarly profound defects in their neuromuscular junctions. Here we demonstrate that agrin acts via a receptor complex that includes MuSK as well as a myotube-specific accessory component.


Cell | 1995

The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases

Trevor N. Stitt; Greg Conn; Martin Goret; Cary Lai; Joanne Bruno; Czeslaw Radzlejewski; Karen Mattsson; John Fisher; David R. Gies; Pamela F. Jones; Piotr Masiakowski; Terence E. Ryan; Nancy J Tobkes; D.H Chen; Peter S. DiStefano; George L. Long; Claudio Basilico; Mitchell Goldfarb; Greg Lemke; David J. Glass; George D. Yancopoulos

We report the identification of ligands for Tyro 3 (alternatively called Sky, rse, brt, or tif) and Axl (alternatively, Ark or UFO), members of a previously orphan family of receptor-like tyrosine kinases. These ligands correspond to protein S, a protease regulator that is a potent anticoagulant, and Gas6, a protein related to protein S but lacking any known function. Our results are reminiscent of recent findings that the procoagulant thrombin, a protease that drives clot formation by cleaving fibrinogen to form fibrin, also binds and activates intracellular signaling via a G protein-coupled cell surface receptor. Proteases and protease regulators that also activate specific cell surface receptors may serve to integrate coagulation with associated cellular responses required for tissue repair and growth, as well as to coordinate protease cascades and associated cellular responses in other systems, such as those involved in growth and remodeling of the nervous system.


EMBO Reports | 2001

CARD4/Nod1 mediates NF‐κB and JNK activation by invasive Shigella flexneri

Stephen E. Girardin; Régis Tournebize; Maria Mavris; Anne Laure Page; Xiaoxia Li; George R. Stark; John Bertin; Peter S. DiStefano; Moshe Yaniv; Philippe J. Sansonetti; Dana J. Philpott

Epithelial cells are refractory to extracellular lipopolysaccharide (LPS), yet when presented inside the cell, it is capable of initiating an inflammatory response. Using invasive Shigella flexneri to deliver LPS into the cytosol, we examined how this factor, once intracellular, activates both NF‐κB and c‐Jun N‐terminal kinase (JNK). Surprisingly, the mode of activation is distinct from that induced by toll‐like receptors (TLRs), which mediate LPS responsiveness from the outside‐in. Instead, our findings demonstrate that this response is mediated by a cytosolic, plant disease resistance‐like protein called CARD4/Nod1. Biochemical studies reveal enhanced oligomerization of CARD4 upon S. flexneri infection, an event necessary for NF‐κB induction. Dominant‐negative versions of CARD4 block activation of NF‐κB and JNK by S. flexneri as well as microinjected LPS. Finally, we showed that invasive S. flexneri triggers the formation of a transient complex involving CARD4, RICK and the IKK complex. This study demonstrates that in addition to the extracellular LPS sensing system mediated by TLRs, mammalian cells also possess a cytoplasmic means of LPS detection via a molecule that is related to plant disease‐resistance proteins.


Journal of Biological Chemistry | 1999

Human CARD4 Protein Is a Novel CED-4/Apaf-1 Cell Death Family Member That Activates NF-κB

John Bertin; Waan-Jeng Nir; Colleen M. Fischer; Olga Tayber; Patrick R. Errada; Jessica R. Grant; John J. Keilty; Mike Gosselin; Keith E. Robison; Grace H. W. Wong; M. Alexandra Glucksmann; Peter S. DiStefano

The nematode CED-4 protein and its human homolog Apaf-1 play a central role in apoptosis by functioning as direct activators of death-inducing caspases. A novel human CED-4/Apaf-1 family member called CARD4 was identified that has a domain structure strikingly similar to the cytoplasmic, receptor-like proteins that mediate disease resistance in plants. CARD4 interacted with the serine-threonine kinase RICK and potently induced NF-κB activity through TRAF-6 and NIK signaling molecules. In addition, coexpression of CARD4 augmented caspase-9-induced apoptosis. Thus, CARD4 coordinates downstream NF-κB and apoptotic signaling pathways and may be a component of the host innate immune response.

Collaboration


Dive into the Peter S. DiStefano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas McDonagh

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

George D. Yancopoulos

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey Hixon

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Andrew Napper

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

John Bertin

Millennium Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Stanley J. Wiegand

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Brad J. Geddes

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge