Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Seidler is active.

Publication


Featured researches published by Peter Seidler.


Journal of Chemical Physics | 2007

Vibrational excitation energies from vibrational coupled cluster response theory

Peter Seidler; Ove Christiansen

Response theory in the context of vibrational coupled cluster (VCC) theory is introduced and used to obtain vibrational excitation energies. The relation to the vibrational configuration interaction (VCI) approach is described, and the increase in accuracy of VCC response energies relative to VCI energies is discussed theoretically in terms of a perturbational order expansion and demonstrated numerically. To illustrate the theory, a pilot implementation is used to obtain anharmonic vibrational frequencies for fundamental, first overtone and combination excitations of formaldehyde as well as for the fundamental transitions of ethylene.


Journal of Chemical Physics | 2009

Automatic derivation and evaluation of vibrational coupled cluster theory equations.

Peter Seidler; Ove Christiansen

A scheme for automatic derivation and evaluation of the expressions occurring in vibrational coupled cluster theory is introduced. The method is based on a Baker-Campbell-Hausdorff expansion of the similarity transformed Hamiltonian and is general both with respect to the excitation level in the parameter space and the mode coupling level in the Hamiltonian. In addition to deriving general expressions, intermediates that lower the computational scaling are automatically detected. The final equations are then evaluated. Due to the commutator based nature of the algorithm, it is also applicable to the evaluation of quantities needed for response theory. Different aspects of the theory and implementation are illustrated by calculations on model systems. Furthermore, all fundamental excitation energies of ethylene oxide are calculated.


Journal of Chemical Theory and Computation | 2010

New Formulation and Implementation of Vibrational Self-Consistent Field Theory

Mikkel Bo Hansen; Manuel Sparta; Peter Seidler; Daniele Toffoli; Ove Christiansen

A new implementation of the vibrational self-consistent field (VSCF) method is presented on the basis of a second quantization formulation. A so-called active terms algorithm is shown to be a significant improvement over a standard implementation reducing the computational effort by one order in the number of degrees of freedom. Various types of screening provide even further reductions in computational scaling and absolute CPU time. VSCF calculations on large polyaromatic hydrocarbon model systems are presented. Further, it is demonstrated that in cases where distant modes are not directly coupled in the Hamiltonian, down to linear scaling of the required CPU time with respect to the number of vibrational modes can be obtained. This is illustrated with calculations on simple model systems with up to 1 million degrees of freedom.


Journal of Chemical Physics | 2008

Towards fast computations of correlated vibrational wave functions : Vibrational coupled cluster response excitation energies at the two-mode coupling level

Peter Seidler; Mikkel Bo Hansen; Ove Christiansen

An efficient implementation of vibrational coupled cluster theory with two-mode excitations and a two-mode Hamiltonian is described. The algorithm is shown to scale cubically with respect to the number of modes which is identical to the scaling of the corresponding vibrational configuration interaction algorithm. This is achieved through the use of special intermediates. The same algorithm can also be used in vibrational Møller-Plesset calculations. To improve performance, screening techniques have been implemented as well. Test calculations on polyaromatic hydrocarbons with up to 264 coupled modes and model systems with up to 1140 modes are used to illustrate the various features of the algorithm.


Journal of Chemical Physics | 2011

Vibrational coupled cluster response theory: a general implementation.

Peter Seidler; Manuel Sparta; Ove Christiansen

The calculation of vibrational contributions to molecular properties using vibrational coupled cluster (VCC) response theory is discussed. General expressions are given for expectation values, linear response functions, and transition moments. It is shown how these expressions can be evaluated for arbitrary levels of excitation in the wave function parameterization as well as for arbitrary coupling levels in the potential and property surfaces. The convergence of the method is assessed by benchmark calculations on formaldehyde. Furthermore, excitation energies and infrared intensities are calculated for the fundamental vibrations of furan using VCC limited to up to two-mode and up to three-mode excitations, VCC[2] and VCC[3], as well as VCC with full two-mode and approximate three-mode couplings, VCC[2pt3].


Journal of Chemical Physics | 2010

Vibrational absorption spectra calculated from vibrational configuration interaction response theory using the Lanczos method

Peter Seidler; Mikkel Bo Hansen; Werner Győrffy; Daniele Toffoli; Ove Christiansen

The Lanczos method is used to efficiently obtain the linear vibrational response function for all frequencies in an arbitrary interval. The complex part of the response function gives the absorption spectrum which can subsequently be analyzed. The method provides a way to obtain global information on the absorption spectrum without explicitly converging all vibrational eigenstates of the system. The tridiagonal Lanczos matrix used to obtain the response functions needs only be constructed once for each operator. Example calculations on cyclopropene and uracil are presented.


Journal of Chemical Physics | 2009

Vibrational coupled cluster theory with full two-mode and approximate three-mode couplings: the VCC[2pt3] model.

Peter Seidler; Eduard Matito; Ove Christiansen

Vibrational coupled cluster (VCC) calculations of molecular vibrational energy levels can be characterized by the number of modes coupled in the Hamiltonian operator and the number of modes simultaneously excited in the parameter space. We propose a VCC model which includes all two-mode couplings in the Hamiltonian and excitation space but only an approximate treatment of three-mode couplings. The approximation is based on a perturbational analysis and the introduced concepts can also be used for even more accurate treatments. The method is iterative and allows the use of VCC response theory to obtain excitation energies. Furthermore, the method is shown to scale with the number of vibrational modes to the third power which is no higher than the corresponding VCC model with only two-mode couplings. Encouraging benchmark calculations are given for a test set of three- and four-atomic molecules. The fundamentals of the larger ethylene oxide molecule have been calculated as well using a grid-based potential energy surface obtained from electronic coupled cluster theory with singles, doubles, and perturbative triples (CCSD(T)).


Journal of Chemical Physics | 2012

Vibrational absorption spectra from vibrational coupled cluster damped linear response functions calculated using an asymmetric Lanczos algorithm.

Bo Thomsen; Mikkel Bo Hansen; Peter Seidler; Ove Christiansen

We report the theory and implementation of vibrational coupled cluster (VCC) damped response functions. From the imaginary part of the damped VCC response function the absorption as function of frequency can be obtained, requiring formally the solution of the now complex VCC response equations. The absorption spectrum can in this formulation be seen as a matrix function of the characteristic VCC Jacobian response matrix. The asymmetric matrix version of the Lanczos method is used to generate a tridiagonal representation of the VCC response Jacobian. Solving the complex response equations in the relevant Lanczos space provides a method for calculating the VCC damped response functions and thereby subsequently the absorption spectra. The convergence behaviour of the algorithm is discussed theoretically and tested for different levels of completeness of the VCC expansion. Comparison is made with results from the recently reported [P. Seidler, M. B. Hansen, W. Györffy, D. Toffoli, and O. Christiansen, J. Chem. Phys. 132, 164105 (2010)] vibrational configuration interaction damped response function calculated using a symmetric Lanczos algorithm. Calculations of IR spectra of oxazole, cyclopropene, and uracil illustrate the usefulness of the new VCC based method.


Journal of Chemical Physics | 2009

Solving the eigenvalue equations of correlated vibrational structure methods: Preconditioning and targeting strategies

Werner Győrffy; Peter Seidler; Ove Christiansen

Various preconditioners and eigenvector targeting strategies in combination with the Davidson and Olsen methods are presented for solving eigenvalue equations encountered in vibrational configuration interaction, its response generalization, and vibrational coupled cluster response theory. The targeting methods allow significant flexibility and robustness in computing selected vibrational states, which are particularly important in the often occurring but nontrivial cases of near degeneracies. We have investigated the effect of a mode-excitation level-based generally applicable preconditioning scheme aiming to improve the robustness of the more standard diagonal preconditioning method. Although increasing convergence rates may be achieved in general through a hierarchy of these preconditioners, the strategy is not always beneficial in terms of CPU time. Features of the methods are demonstrated in calculations of the overtone vibrational states of formaldehyde and the fundamental states of vinyl fluoride, vinyl chloride, vinyl bromide, and naphthalene.


Journal of Chemical Physics | 2010

A Lanczos-chain driven approach for calculating damped vibrational configuration interaction response functions

Mikkel Bo Hansen; Peter Seidler; Werner Győrffy; Ove Christiansen

We present an approach based on the Lanczos method for calculating the vibrational configuration interaction response functions necessary for evaluating the pure vibrational contributions to the polarizabilities and first hyperpolarizabilities of molecules. The method iteratively builds a tridiagonal representation of the central response matrix, which is subsequently used for solving the response equations. From the same chain, the response functions can be evaluated approximately for any frequency as well as using any complex damping factor. Applications to formaldehyde, cyclopropene, and uracil illustrate the concepts presented.

Collaboration


Dive into the Peter Seidler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacob Kongsted

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge