Peter Tompa
Vrije Universiteit Brussel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Tompa.
Trends in Biochemical Sciences | 2002
Peter Tompa
The recent suggestion that the classical structure-function paradigm should be extended to proteins and protein domains whose native and functional state is intrinsically unstructured has received a great deal of support. There is ample evidence that the unstructured state, common to all living organisms, is essential for basic cellular functions; thus it deserves to be recognized as a separate functional and structural category within the protein kingdom. In this review, recent findings are surveyed to illustrate that this novel but rapidly advancing field has reached a point where these proteins can be comprehensively classified on the basis of structure and function.
Nucleic Acids Research | 2007
Megan Sickmeier; Justin Hamilton; Tanguy LeGall; Vladimir Vacic; Marc S. Cortese; Agnes Tantos; Beáta Szabó; Peter Tompa; Jake Yue Chen; Vladimir N. Uversky; Zoran Obradovic; A. Keith Dunker
The Database of Protein Disorder (DisProt) links structure and function information for intrinsically disordered proteins (IDPs). Intrinsically disordered proteins do not form a fixed three-dimensional structure under physiological conditions, either in their entireties or in segments or regions. We define IDP as a protein that contains at least one experimentally determined disordered region. Although lacking fixed structure, IDPs and regions carry out important biological functions, being typically involved in regulation, signaling and control. Such functions can involve high-specificity low-affinity interactions, the multiple binding of one protein to many partners and the multiple binding of many proteins to one partner. These three features are all enabled and enhanced by protein intrinsic disorder. One of the major hindrances in the study of IDPs has been the lack of organized information. DisProt was developed to enable IDP research by collecting and organizing knowledge regarding the experimental characterization and the functional associations of IDPs. In addition to being a unique source of biological information, DisProt opens doors for a plethora of bioinformatics studies. DisProt is openly available at .
FEBS Letters | 2005
Peter Tompa
Intrinsically unstructured proteins (IUPs) are common in various proteomes and occupy a unique structural and functional niche in which function is directly linked to structural disorder. The evidence that these proteins exist without a well‐defined folded structure in vitro is compelling, and justifies considering them a separate class within the protein world. In this paper, novel advances in the rapidly advancing field of IUPs are reviewed, with the major attention directed to the evidence of their unfolded character in vivo, the interplay of their residual structure and their various functional modes and the functional benefits their malleable structural state provides. Via all these details, it is demonstrated that in only a couple of years after its conception, the idea of protein disorder has already come of age and transformed our basic concepts of protein structure and function.
Chemical Reviews | 2014
Robin van der Lee; Marija Buljan; Benjamin Lang; Robert J. Weatheritt; Gary W. Daughdrill; A. Keith Dunker; Monika Fuxreiter; Julian Gough; Joerg Gsponer; David Jones; Philip M. Kim; Richard W. Kriwacki; Christopher J. Oldfield; Rohit V. Pappu; Peter Tompa; Vladimir N. Uversky; Peter E. Wright; M. Madan Babu
1.1. Uncharacterized Protein Segments Are a Source of Functional Novelty Over the past decade, we have observed a massive increase in the amount of information describing protein sequences from a variety of organisms.1,2 While this may reflect the diversity in sequence space, and possibly also in function space,3 a large proportion of the sequences lacks any useful function annotation.4,5 Often these sequences are annotated as putative or hypothetical proteins, and for the majority their functions still remain unknown.6,7 Suggestions about potential protein function, primarily molecular function, often come from computational analysis of their sequences. For instance, homology detection allows for the transfer of information from well-characterized protein segments to those with similar sequences that lack annotation of molecular function.8−10 Other aspects of function, such as the biological processes proteins participate in, may come from genetic- and disease-association studies, expression and interaction network data, and comparative genomics approaches that investigate genomic context.11−17 Characterization of unannotated and uncharacterized protein segments is expected to lead to the discovery of novel functions as well as provide important insights into existing biological processes. In addition, it is likely to shed new light on molecular mechanisms of diseases that are not yet fully understood. Thus, uncharacterized protein segments are likely to be a large source of functional novelty relevant for discovering new biology.
The FASEB Journal | 2004
Peter Tompa; Péter Csermely
Chaperones are highly sophisticated protein machines that assist the folding of RNA molecules or other proteins. Their function is generally thought to require a fine‐tuned and highly conserved structure: despite the recent recognition of the widespread occurrence of structural disorder in the proteome, this structural trait has never been generally considered in molecular chaperones. In this review we give evidence for the prevalence of functional regions without a well‐defined 3‐D structure in RNA and protein chaperones. By considering a variety of individual examples, we suggest that the structurally disordered chaperone regions either function as molecular recognition elements that act as solubilizers or locally loosen the structure of the kinetically trapped folding intermediate via transient binding to facilitate its conformational search. The importance of structural disorder is underlined by a predictor of natural disordered regions, which shows an extremely high proportion of such regions, unparalleled in any other protein class, within RNA chaperones: 54.2% of their residues fall into disordered regions and 40% fall within disordered regions longer than 30 consecutive residues. Structural disorder also prevails in protein chaperones, for which frequency values are 36.7% and 15%, respectively. In keeping with these and other details, a novel “entropy transfer” model is presented to account for the mechanistic role of structural disorder in chaperone function.—Tompa, P., Csermely, P. The role of structural disorder in the function of RNA and protein chaperones. FASEB J. 18, 1169–1175 (2004)
Plant Physiology | 2008
Denes Kovacs; Eva Kalmar; Zsolt Török; Peter Tompa
ERD10 and ERD14 (for early response to dehydration) proteins are members of the dehydrin family that accumulate in response to abiotic environmental stresses, such as high salinity, drought, and low temperature, in Arabidopsis (Arabidopsis thaliana). Whereas these proteins protect cells against the consequences of dehydration, the exact mode(s) of their action remains poorly understood. Here, detailed evidence is provided that ERD10 and ERD14 belong to the family of intrinsically disordered proteins, and it is shown in various assays that they act as chaperones in vitro. ERD10 and ERD14 are able to prevent the heat-induced aggregation and/or inactivation of various substrates, such as lysozyme, alcohol dehydrogenase, firefly luciferase, and citrate synthase. It is also demonstrated that ERD10 and ERD14 bind to acidic phospholipid vesicles without significantly affecting membrane fluidity. Membrane binding is strongly influenced by ionic strength. Our results show that these intrinsically disordered proteins have chaperone activity of rather wide substrate specificity and that they interact with phospholipid vesicles through electrostatic forces. We suggest that these findings provide the rationale for the mechanism of how these proteins avert the adverse effects of dehydration stresses.
Chemical Reviews | 2014
Johnny Habchi; Peter Tompa; Sonia Longhi; Vladimir N. Uversky
Johnny Habchi,†,‡ Peter Tompa,* Sonia Longhi,†,‡,* and Vladimir N. Uversky* †Aix-Marseille Universite,́ Architecture et Fonction des Macromolećules Biologiques (AFMB), UMR 7257, 13288, Marseille, France ‡CNRS, Architecture et Fonction des Macromolećules Biologiques (AFMB), UMR 7257, 13288, Marseille, France VIB Department of Structural Biology, Vrije Universiteit Brussel, 1050 Ixelles, Belgium Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, H-1113, Hungary Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33620, United States Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
BioEssays | 2009
Peter Tompa; Monika Fuxreiter; Christopher J. Oldfield; István Simon; A. Keith Dunker; Vladimir N. Uversky
Protein–protein interactions are thought to be mediated by domains, which are autonomous folding units of proteins. Recently, a second type of interaction has been suggested, mediated by short segments termed linear motifs, which are related to recognition elements of intrinsically disordered regions. Here, we propose a third kind of protein–protein recognition mechanism, mediated by disordered regions longer than 20–30 residues. Bioinformatics predictions and well‐characterized examples, such as the kinase‐inhibitory domain of Cdk inhibitors and the Wiskott–Aldrich syndrome protein (WASP)‐homology domain 2 of actin‐binding proteins, show that these disordered regions conform to the definition of domains rather than motifs, i.e., they represent functional, evolutionary, and structural units. Their functions are distinct from those of short motifs and ordered domains, and establish a third kind of interaction principle. With these points, we argue that these long disordered regions should be recognized as a distinct class of biologically functional protein domains.
Nature Chemical Biology | 2008
Monika Fuxreiter; Peter Tompa; István Simon; Vladimir N. Uversky; Jeffrey C. Hansen; Francisco J. Asturias
Transcriptional control requires the spatially and temporally coordinated action of many macromolecular complexes. Chromosomal proteins, transcription factors, co-activators and components of the general transcription machinery, including RNA polymerases, often use structurally or stoichiometrically ill-defined regions for interactions that convey regulatory information in processes ranging from chromatin remodeling to mRNA processing. Determining the functional significance of intrinsically disordered protein regions and developing conceptual models of their action will help to illuminate their key role in transcription regulation. Complexes comprising disordered regions often display short recognition elements embedded in flexible and sequentially variable environments that can lead to structural and functional malleability. This provides versatility to recognize multiple targets having different structures, facilitate conformational rearrangements and physically communicate with many partners in response to environmental changes. All these features expand the capacities of ordered complexes and give rise to efficient regulatory mechanisms.
Molecular Cell | 2014
Peter Tompa; Norman E. Davey; Toby J. Gibson; M. Madan Babu
A molecular description of functional modules in the cell is the focus of many high-throughput studies in the postgenomic era. A large portion of biomolecular interactions in virtually all cellular processes is mediated by compact interaction modules, referred to as peptide motifs. Such motifs are typically less than ten residues in length, occur within intrinsically disordered regions, and are recognized and/or posttranslationally modified by structured domains of the interacting partner. In this review, we suggest that there might be over a million instances of peptide motifs in the human proteome. While this staggering number suggests that peptide motifs are numerous and the most understudied functional module in the cell, it also holds great opportunities for new discoveries.