Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rita Pancsa is active.

Publication


Featured researches published by Rita Pancsa.


PLOS ONE | 2012

Structural Disorder in Eukaryotes

Rita Pancsa; Peter Tompa

Based on early bioinformatic studies on a handful of species, the frequency of structural disorder of proteins is generally thought to be much higher in eukaryotes than in prokaryotes. To refine this view, we present here a comparative prediction study and analysis of 194 fully described eukaryotic proteomes and 87 reference prokaryotes for structural disorder. We found that structural disorder does distinguish eukaryotes from prokaryotes, but its frequency spans a very wide range in the two superkingdoms that largely overlap. The number of disordered binding regions and different Pfam domain types also contribute to distinguish eukaryotes from prokaryotes. Unexpectedly, the highest levels – and highest variability – of predicted disorder is found in protists, i.e. single-celled eukaryotes, often surpassing more complex eukaryote organisms, plants and animals. This trend contrasts with that of the number of domain types, which increases rather monotonously toward more complex organisms. The level of structural disorder appears to be strongly correlated with lifestyle, because some obligate intracellular parasites and endosymbionts have the lowest levels, whereas host-changing parasites have the highest level of predicted disorder. We conclude that protists have been the evolutionary hot-bed of experimentation with structural disorder, in a period when structural disorder was actively invented and the major functional classes of disordered proteins established.


Nature Communications | 2013

From protein sequence to dynamics and disorder with DynaMine

Elisa Cilia; Rita Pancsa; Peter Tompa; Tom Lenaerts; Wim F. Vranken

Protein function and dynamics are closely related; however, accurate dynamics information is difficult to obtain. Here based on a carefully assembled data set derived from experimental data for proteins in solution, we quantify backbone dynamics properties on the amino-acid level and develop DynaMine--a fast, high-quality predictor of protein backbone dynamics. DynaMine uses only protein sequence information as input and shows great potential in distinguishing regions of different structural organization, such as folded domains, disordered linkers, molten globules and pre-structured binding motifs of different sizes. It also identifies disordered regions within proteins with an accuracy comparable to the most sophisticated existing predictors, without depending on prior disorder knowledge or three-dimensional structural information. DynaMine provides molecular biologists with an important new method that grasps the dynamical characteristics of any protein of interest, as we show here for human p53 and E1A from human adenovirus 5.


Nucleic Acids Research | 2014

The DynaMine webserver: predicting protein dynamics from sequence

Elisa Cilia; Rita Pancsa; Peter Tompa; Tom Lenaerts; Wim F. Vranken

Protein dynamics are important for understanding protein function. Unfortunately, accurate protein dynamics information is difficult to obtain: here we present the DynaMine webserver, which provides predictions for the fast backbone movements of proteins directly from their amino-acid sequence. DynaMine rapidly produces a profile describing the statistical potential for such movements at residue-level resolution. The predicted values have meaning on an absolute scale and go beyond the traditional binary classification of residues as ordered or disordered, thus allowing for direct dynamics comparisons between protein regions. Through this webserver, we provide molecular biologists with an efficient and easy to use tool for predicting the dynamical characteristics of any protein of interest, even in the absence of experimental observations. The prediction results are visualized and can be directly downloaded. The DynaMine webserver, including instructive examples describing the meaning of the profiles, is available at http://dynamine.ibsquare.be.


Iubmb Life | 2012

Interactions via intrinsically disordered regions: What kind of motifs?

Rita Pancsa; Monika Fuxreiter

Proteins containing intrinsically disordered (ID) regions are widespread in eukaryotic organisms and are mostly utilized in regulatory processes. ID regions can mediate binary interactions of proteins or promote organization of large assemblies. Post‐translational modifications of ID regions often serve as decision points in signaling pathways. Why Nature distinguished ID proteins in molecular recognition functions? In a simple view, binding of ID regions is accompanied by a large entropic penalty as compared to folded proteins. Even in complexes however, ID regions can preserve their conformational freedom, thereby recruit further partners and perform various functions. What sort of benefits ID regions offer for molecular interactions and which properties are exploited in the corresponding complexes? Here, we review models explaining the recognition mechanisms of ID proteins. Motif‐based interactions are central to all proposed scenarios, including prestructured elements, anchoring sites and linear motifs. We aim to extract consensus features of the models, which could be used to predict ID‐binding sites for a variety of partners.


Archives of Biochemistry and Biophysics | 2013

Intrinsically disordered proteins undergo and assist folding transitions in the proteome.

Denes Kovacs; Beáta Szabó; Rita Pancsa; Peter Tompa

The common notion in the protein world holds that proteins are synthesized as a linear polypeptide chain, followed by folding into a unique, functional 3D-structure. As outlined in many articles of this volume, this is in fact the case for a great proportion of the proteome. Many proteins and protein domains, however, are intrinsically disordered (IDPs), i.e., they cannot fold on their own, but often undergo a folding transition in the presence of a binding partner. This binding-induced folding process shows strong conceptual parallels with the folding of globular proteins, in a sense that it can proceed via two routes, either induction of the folded conformation from an initial random state or selection of a pre-formed state already present in the ensemble. In addition, we show that IDPs not only undergo folding themselves, they also assist the folding process of other proteins as chaperones, and even contribute to the quality control processes of the cell, in which irreparably misfolded proteins are recognized and tagged for proteasomal degradation. These various mechanisms suggest that structural disorder, in a biological context, is linked with protein folding in several ways, in which both the IDP and its partner may undergo reciprocal structural transitions.


PLOS ONE | 2013

Functional diversity and structural disorder in the human ubiquitination pathway.

Pallab Bhowmick; Rita Pancsa; Mainak Guharoy; Peter Tompa

The ubiquitin-proteasome system plays a central role in cellular regulation and protein quality control (PQC). The system is built as a pyramid of increasing complexity, with two E1 (ubiquitin activating), few dozen E2 (ubiquitin conjugating) and several hundred E3 (ubiquitin ligase) enzymes. By collecting and analyzing E3 sequences from the KEGG BRITE database and literature, we assembled a coherent dataset of 563 human E3s and analyzed their various physical features. We found an increase in structural disorder of the system with multiple disorder predictors (IUPred – E1: 5.97%, E2: 17.74%, E3: 20.03%). E3s that can bind E2 and substrate simultaneously (single subunit E3, ssE3) have significantly higher disorder (22.98%) than E3s in which E2 binding (multi RING-finger, mRF, 0.62%), scaffolding (6.01%) and substrate binding (adaptor/substrate recognition subunits, 17.33%) functions are separated. In ssE3s, the disorder was localized in the substrate/adaptor binding domains, whereas the E2-binding RING/HECT-domains were structured. To demonstrate the involvement of disorder in E3 function, we applied normal modes and molecular dynamics analyses to show how a disordered and highly flexible linker in human CBL (an E3 that acts as a regulator of several tyrosine kinase-mediated signalling pathways) facilitates long-range conformational changes bringing substrate and E2-binding domains towards each other and thus assisting in ubiquitin transfer. E3s with multiple interaction partners (as evidenced by data in STRING) also possess elevated levels of disorder (hubs, 22.90% vs. non-hubs, 18.36%). Furthermore, a search in PDB uncovered 21 distinct human E3 interactions, in 7 of which the disordered region of E3s undergoes induced folding (or mutual induced folding) in the presence of the partner. In conclusion, our data highlights the primary role of structural disorder in the functions of E3 ligases that manifests itself in the substrate/adaptor binding functions as well as the mechanism of ubiquitin transfer by long-range conformational transitions.


PLOS Computational Biology | 2014

Synonymous constraint elements show a tendency to encode intrinsically disordered protein segments.

Mauricio Macossay-Castillo; Simone Kosol; Peter Tompa; Rita Pancsa

Synonymous constraint elements (SCEs) are protein-coding genomic regions with very low synonymous mutation rates believed to carry additional, overlapping functions. Thousands of such potentially multi-functional elements were recently discovered by analyzing the levels and patterns of evolutionary conservation in human coding exons. These elements provide a good opportunity to improve our understanding of how the redundant nature of the genetic code is exploited in the cell. Our premise is that the protein segments encoded by such elements might better comply with the increased functional demands if they are structurally less constrained (i.e. intrinsically disordered). To test this idea, we investigated the protein segments encoded by SCEs with computational tools to describe the underlying structural properties. In addition to SCEs, we examined the level of disorder, secondary structure, and sequence complexity of protein regions overlapping with experimentally validated splice regulatory sites. We show that multi-functional gene regions translate into protein segments that are significantly enriched in structural disorder and compositional bias, while they are depleted in secondary structure and domain annotations compared to reference segments of similar lengths. This tendency suggests that relaxed protein structural constraints provide an advantage when accommodating multiple overlapping functions in coding regions.


PLOS Computational Biology | 2013

Structural Disorder Provides Increased Adaptability for Vesicle Trafficking Pathways

Natalia Pietrosemoli; Rita Pancsa; Peter Tompa

Vesicle trafficking systems play essential roles in the communication between the organelles of eukaryotic cells and also between cells and their environment. Endocytosis and the late secretory route are mediated by clathrin-coated vesicles, while the COat Protein I and II (COPI and COPII) routes stand for the bidirectional traffic between the ER and the Golgi apparatus. Despite similar fundamental organizations, the molecular machinery, functions, and evolutionary characteristics of the three systems are very different. In this work, we compiled the basic functional protein groups of the three main routes for human and yeast and analyzed them from the structural disorder perspective. We found similar overall disorder content in yeast and human proteins, confirming the well-conserved nature of these systems. Most functional groups contain highly disordered proteins, supporting the general importance of structural disorder in these routes, although some of them seem to heavily rely on disorder, while others do not. Interestingly, the clathrin system is significantly more disordered (∼23%) than the other two, COPI (∼9%) and COPII (∼8%). We show that this structural phenomenon enhances the inherent plasticity and increased evolutionary adaptability of the clathrin system, which distinguishes it from the other two routes. Since multi-functionality (moonlighting) is indicative of both plasticity and adaptability, we studied its prevalence in vesicle trafficking proteins and correlated it with structural disorder. Clathrin adaptors have the highest capability for moonlighting while also comprising the most highly disordered members. The ability to acquire tissue specific functions was also used to approach adaptability: clathrin route genes have the most tissue specific exons encoding for protein segments enriched in structural disorder and interaction sites. Overall, our results confirm the general importance of structural disorder in vesicle trafficking and suggest major roles for this structural property in shaping the differences of evolutionary adaptability in the three routes.


Bioinformatics | 2018

DIBS: a repository of disordered binding sites mediating interactions with ordered proteins

Eva Schad; Erzsébet Fichó; Rita Pancsa; István Simon; Zsuzsanna Dosztányi; Bálint Mészáros

Motivation Intrinsically Disordered Proteins (IDPs) mediate crucial protein‐protein interactions, most notably in signaling and regulation. As their importance is increasingly recognized, the detailed analyses of specific IDP interactions opened up new opportunities for therapeutic targeting. Yet, large scale information about IDP‐mediated interactions in structural and functional details are lacking, hindering the understanding of the mechanisms underlying this distinct binding mode. Results Here, we present DIBS, the first comprehensive, curated collection of complexes between IDPs and ordered proteins. DIBS not only describes by far the highest number of cases, it also provides the dissociation constants of their interactions, as well as the description of potential post‐translational modifications modulating the binding strength and linear motifs involved in the binding. Together with the wide range of structural and functional annotations, DIBS will provide the cornerstone for structural and functional studies of IDP complexes. Availability and implementation DIBS is freely accessible at http://dibs.enzim.ttk.mta.hu/. The DIBS application is hosted by Apache web server and was implemented in PHP. To enrich querying features and to enhance backend performance a MySQL database was also created.


Biophysical Journal | 2016

Early Folding Events, Local Interactions, and Conservation of Protein Backbone Rigidity

Rita Pancsa; Daniele Raimondi; Elisa Cilia; Wim F. Vranken

Protein folding is in its early stages largely determined by the protein sequence and complex local interactions between amino acids, resulting in lower energy conformations that provide the context for further folding into the native state. We compiled a comprehensive data set of early folding residues based on pulsed labeling hydrogen deuterium exchange experiments. These early folding residues have corresponding higher backbone rigidity as predicted by DynaMine from sequence, an effect also present when accounting for the secondary structures in the folded protein. We then show that the amino acids involved in early folding events are not more conserved than others, but rather, early folding fragments and the secondary structure elements they are part of show a clear trend toward conserving a rigid backbone. We therefore propose that backbone rigidity is a fundamental physical feature conserved by proteins that can provide important insights into their folding mechanisms and stability.

Collaboration


Dive into the Rita Pancsa's collaboration.

Top Co-Authors

Avatar

Peter Tompa

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Wim F. Vranken

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Elisa Cilia

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Tom Lenaerts

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Daniele Raimondi

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mihaly Varadi

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

M. Madan Babu

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Daniel J. McGrail

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge