Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Vuust is active.

Publication


Featured researches published by Peter Vuust.


Quarterly Journal of Experimental Psychology | 2010

Follow you, follow me: Continuous mutual prediction and adaptation in joint tapping

Ivana Konvalinka; Peter Vuust; Andreas Roepstorff; Chris Frith

To study the mechanisms of coordination that are fundamental to successful interactions we carried out a joint finger tapping experiment in which pairs of participants were asked to maintain a given beat while synchronizing to an auditory signal coming from the other person or the computer. When both were hearing each other, the pair became a coupled, mutually and continuously adaptive unit of two “hyper-followers”, with their intertap intervals (ITIs) oscillating in opposite directions on a tap-to-tap basis. There was thus no evidence for the emergence of a leader–follower strategy. We also found that dyads were equally good at synchronizing with the irregular, but responsive other as with the predictable, unresponsive computer. However, they performed worse when the “other” was both irregular and unresponsive. We thus propose that interpersonal coordination is facilitated by the mutual abilities to (a) predict the others subsequent action and (b) adapt accordingly on a millisecond timescale.


NeuroImage | 2005

To musicians, the message is in the meter Pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians

Peter Vuust; Karen Johanne Pallesen; Christopher J. Bailey; Titia L. van Zuijen; Albert Gjedde; Andreas Roepstorff; Leif Østergaard

Musicians exchange non-verbal cues as messages when they play together. This is particularly true in music with a sketchy outline. Jazz musicians receive and interpret the cues when performance parts from a regular pattern of rhythm, suggesting that they enjoy a highly developed sensitivity to subtle deviations of rhythm. We demonstrate that pre-attentive brain responses recorded with magnetoencephalography to rhythmic incongruence are left-lateralized in expert jazz musicians and right-lateralized in musically inept non-musicians. The left-lateralization of the pre-attentive responses suggests functional adaptation of the brain to a task of communication, which is much like that of language.


Cortex | 2009

Predictive coding of music – Brain responses to rhythmic incongruity

Peter Vuust; Leif Østergaard; Karen Johanne Pallesen; Christopher J. Bailey; Andreas Roepstorff

During the last decades, models of music processing in the brain have mainly discussed the specificity of brain modules involved in processing different musical components. We argue that predictive coding offers an explanatory framework for functional integration in musical processing. Further, we provide empirical evidence for such a network in the analysis of event-related MEG-components to rhythmic incongruence in the context of strong metric anticipation. This is seen in a mismatch negativity (MMNm) and a subsequent P3am component, which have the properties of an error term and a subsequent evaluation in a predictive coding framework. There were both quantitative and qualitative differences in the evoked responses in expert jazz musicians compared with rhythmically unskilled non-musicians. We propose that these differences trace a functional adaptation and/or a genetic pre-disposition in experts which allows for a more precise rhythmic prediction.


Brain Research | 2007

Representation of harmony rules in the human brain: Further evidence from event-related potentials

Sakari Leino; Mari Tervaniemi; Peter Vuust

In Western tonal music, the rules of harmony determine the order and music-structural importance of events in a musical piece: for instance, the tonic chord, built on the first note of the diatonic scale, is usually placed at the end of chord sequences. A brain response termed the early right anterior negativity (ERAN) is elicited when a harmonically incongruous chord is inserted within or at the end of a musical sequence. The present study was conducted to test whether the ERAN reflects the processing of harmony rather than the building of a tonal context and whether the ERAN is also elicited by violations of the tuning of the sounds upon which harmony is based. To this aim, ten subjects listened to musical sequences containing either expected chords only, a harmonically incongruous chord in one of three positions within the cadence, or a harmonically congruous but mistuned chord in one of the three positions. Simultaneously, the electroencephalograph (EEG) was recorded. Incongruous chords violating the rules of harmony elicited a bilateral early anterior negativity, the amplitude of which depended on the degree of the harmony violation. On the contrary, mistuned chords, violating the rule of relations between all the sounds in the sequences, elicited a bilateral fronto-central negativity (the mismatch negativity, or MMN). The MMN was not modulated by the position of the violation within the musical sequence and had a longer peak latency than the anterior negativity elicited by the harmony rule violations. In conclusion, violations of the harmony and tuning rules of Western tonal music were found to generate specific and distinct electric responses in the human brain.


NeuroImage | 2006

It don't mean a thing... Keeping the rhythm during polyrhythmic tension, activates language areas (BA47).

Peter Vuust; Andreas Roepstorff; Mikkel Wallentin; Kim Mouridsen; Leif Østergaard

Music is experienced and understood on the basis of foreground/background relationships created between actual music and the underlying meter. In contemporary styles of music so-called polyrhythmic, structures hence create tension between a counter pulse and the main pulse. This exerts a marked influence on the listener, particularly when the experience of the original meter is maintained during the counter pulse. We here demonstrate that Brodmann area 47, an area associated with higher processing of language, is activated bilaterally when musicians tap the main pulse in a polymetric context where the music emphasizes a counter meter. This suggests that the processing of metric elements of music relies on brain areas also involved in language comprehension. We propose that BA47 is involved in general neuronal processing of temporal coherence subserving both language and music.


PLOS ONE | 2014

Syncopation, body-movement and pleasure in groove music.

Maria A. G. Witek; Eric Clarke; Mikkel Wallentin; Morten L. Kringelbach; Peter Vuust

Moving to music is an essential human pleasure particularly related to musical groove. Structurally, music associated with groove is often characterised by rhythmic complexity in the form of syncopation, frequently observed in musical styles such as funk, hip-hop and electronic dance music. Structural complexity has been related to positive affect in music more broadly, but the function of syncopation in eliciting pleasure and body-movement in groove is unknown. Here we report results from a web-based survey which investigated the relationship between syncopation and ratings of wanting to move and experienced pleasure. Participants heard funk drum-breaks with varying degrees of syncopation and audio entropy, and rated the extent to which the drum-breaks made them want to move and how much pleasure they experienced. While entropy was found to be a poor predictor of wanting to move and pleasure, the results showed that medium degrees of syncopation elicited the most desire to move and the most pleasure, particularly for participants who enjoy dancing to music. Hence, there is an inverted U-shaped relationship between syncopation, body-movement and pleasure, and syncopation seems to be an important structural factor in embodied and affective responses to groove.


Neuroreport | 2008

Music in minor activates limbic structures : a relationship with dissonance?

Anders Green; Klaus B. Bærentsen; Hans Stødkilde-Jørgensen; Mikkel Wallentin; Andreas Roepstorff; Peter Vuust

Using functional magnetic resonance imaging, we contrasted major and minor mode melodies controlled for liking to study the neural basis of musical mode perception. To examine the influence of the larger dissonance in minor melodies on neural activation differences, we further introduced a strongly dissonant stimulus, in the form of a chromatic scale. Minor mode melodies were evaluated as sadder than major melodies, and in comparison they caused increased activity in limbic structures, namely left parahippocampal gyrus, bilateral ventral anterior cingulate, and in left medial prefrontal cortex. Dissonance explained some, but not all, of the heightened activity in the limbic structures when listening to minor mode music.


Cortex | 2011

New fast mismatch negativity paradigm for determining the neural prerequisites for musical ability.

Peter Vuust; Enrico Glerean; Miia Seppänen; Satu Pakarinen; Mari Tervaniemi; Risto Näätänen

Studies have consistently shown that the mismatch negativity (MMN) for different auditory features correlates with musical skills, and that this effect is more pronounced for stimuli integrated in complex musical contexts. Hence, the MMN can potentially be used for determining the development of auditory skills and musical expertise. MMN paradigms, however, are typically very long in duration, and far from sounding musical. Therefore, we developed a novel multi-feature MMN paradigm with 6 different deviant types integrated in a complex musical context of no more than 20 min in duration. We found significant MMNs for all 6 deviant types. Hence, this short objective measure can putatively be used as an index for auditory and musical development.


Brain Research | 2011

Distinct neural responses to chord violations: A multiple source analysis study

Eduardo A. Garza Villarreal; Elvira Brattico; Sakari Leino; Leif Østergaard; Peter Vuust

The human brain is constantly predicting the auditory environment by representing sequential similarities and extracting temporal regularities. It has been proposed that simple auditory regularities are extracted at lower stations of the auditory cortex and more complex ones at other brain regions, such as the prefrontal cortex. Deviations from auditory regularities elicit a family of early negative electric potentials distributed over the frontal regions of the scalp. In this study, we wished to disentangle the brain processes associated with sequential vs. hierarchical auditory regularities in a musical context by studying the event-related potentials (ERPs), the behavioral responses to violations of these regularities, and the localization of the underlying ERP generators using two different source analysis algorithms. To this aim, participants listened to musical cadences constituted by seven chords, each containing either harmonically congruous chords, harmonically incongruous chords, or harmonically congruous but mistuned chords. EEG was recorded and multiple source analysis was performed. Incongruous chords violating the rules of harmony elicited a bilateral ERAN, whereas mistuned chords within chord sequences elicited a right-lateralized MMN. We found that the dominant cortical sources for the ERAN were localized around Brocas area and its right homolog, whereas the MMN generators were localized around the primary auditory cortex. These findings suggest a predominant role of the auditory cortices in detecting sequential scale regularities and the posterior prefrontal cortex in parsing hierarchical regularities in music.


NeuroImage | 2013

From Vivaldi to Beatles and back: Predicting lateralized brain responses to music

Vinoo Alluri; Petri Toiviainen; Torben E. Lund; Mikkel Wallentin; Peter Vuust; Asoke K. Nandi; Tapani Ristaniemi

We aimed at predicting the temporal evolution of brain activity in naturalistic music listening conditions using a combination of neuroimaging and acoustic feature extraction. Participants were scanned using functional Magnetic Resonance Imaging (fMRI) while listening to two musical medleys, including pieces from various genres with and without lyrics. Regression models were built to predict voxel-wise brain activations which were then tested in a cross-validation setting in order to evaluate the robustness of the hence created models across stimuli. To further assess the generalizability of the models we extended the cross-validation procedure by including another dataset, which comprised continuous fMRI responses of musically trained participants to an Argentinean tango. Individual models for the two musical medleys revealed that activations in several areas in the brain belonging to the auditory, limbic, and motor regions could be predicted. Notably, activations in the medial orbitofrontal region and the anterior cingulate cortex, relevant for self-referential appraisal and aesthetic judgments, could be predicted successfully. Cross-validation across musical stimuli and participant pools helped identify a region of the right superior temporal gyrus, encompassing the planum polare and the Heschls gyrus, as the core structure that processed complex acoustic features of musical pieces from various genres, with or without lyrics. Models based on purely instrumental music were able to predict activation in the bilateral auditory cortices, parietal, somatosensory, and left hemispheric primary and supplementary motor areas. The presence of lyrics on the other hand weakened the prediction of activations in the left superior temporal gyrus. Our results suggest spontaneous emotion-related processing during naturalistic listening to music and provide supportive evidence for the hemispheric specialization for categorical sounds with realistic stimuli. We herewith introduce a powerful means to predict brain responses to music, speech, or soundscapes across a large variety of contexts.

Collaboration


Dive into the Peter Vuust's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eduardo A. Garza-Villarreal

Universidad Autónoma de Nuevo León

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge