Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Willems is active.

Publication


Featured researches published by Peter Willems.


Materials | 2011

Storage Phosphors for Medical Imaging

Paul Leblans; Dirk Vandenbroucke; Peter Willems

Computed radiography (CR) uses storage phosphor imaging plates for digital imaging. Absorbed X-ray energy is stored in crystal defects. In read-out the energy is set free as blue photons upon optical stimulation. In the 35 years of CR history, several storage phosphor families were investigated and developed. An explanation is given as to why some materials made it to the commercial stage, while others did not. The photo stimulated luminescence mechanism of the current commercial storage phosphors, BaFBr:Eu2+ and CsBr:Eu2+ is discussed. The relation between storage phosphor plate physical characteristics and image quality is explained. It is demonstrated that the morphology of the phosphor crystals in the CR imaging plate has a very significant impact on its performance.


Journal of Digital Imaging | 2000

A new needle-crystalline computed radiography detector.

Paul Leblans; Luc Struye; Peter Willems

The most successful digital radiography detectors to date have been storage phosphor plates used in computed radiography (CR). The detector is cheap, has good producibility, and is robust. Direct radiography (DR) systems are being developed based on flat-panel technology. Better image quality is claimed for some DR systems. On the other hand, DR detectors have low producibility and robustness, and a high price. A new CR detector is being developed at Agfa that combines the advantages of CR and DR. It is a storage phosphor plate made up of needle-shaped crystals. The phosphor efficiently converts absorbed x-ray quanta into photostimulable centers for efficient read out. It has a large dynamic range and its emision is efficiently detected with both photomultiplier tube (PMT) and charge coupled device (CCD). It is shown that CR systems based on the new detector offer image quality that matches that of the best DR systems.


Medical Imaging 2001: Physics of Medical Imaging | 2001

New needle-crystalline CR detector

Paul Leblans; Luc Struye; Peter Willems

The storage phosphor RbBr:Tl+ can be grown in needles via vacuum deposition. Thanks to reduced lateral light diffusion thick needle screens still offer acceptable resolution. Due to its low intrinsic X-ray absorption, however, a RbBr:Tl+ needle screen does not lead to a better absorption/resolution compromise than a BaFBr1-xIx:Eu2+ powder screen. CsBr:Eu2+ does combine high specific X-ray absorption and the possibility of needle growth. Its blue emission, peaking at 440 nm and near IR stimulation band, with maximum at 685 nm, make it well suited for use in CR systems. Sensitivity and sharpness of a 500 (mu) thick CsBr:Eu2+ needle screen were measured in a flying-spot scanner. The number of photostimulated light quanta per absorbed X-ray quantum is higher than for BaFBr1-xIx:Eu2+. At 70 kVp and 0.5 mm Cu filtration, equal sharpness is obtained for 85% vs. 46% X-ray absorption in BaFBr1-xIx:Eu2+ screens. DQE was measured at 2.5 (mu) Gy, 70 kVp, and 0.5 mm Cu filtration for a CsBr:Eu2+ needle screen in a flying-spot scanner. Up to 3 lp/mm, DQE was 2 times higher than for state-of-the-art CR systems and equal to the DQE claimed for flat panel DR systems, based on a-Si photodiodes combined with a CsI:Tl scintillator layer.


Medical Imaging 2002: Physics of Medical Imaging | 2002

Practical method for detected quantum efficiency (DQE) assessment of digital mammography systems in the radiological environment

Frank Rogge; Dirk Vandenbroucke; Luc Struye; Hilde Bosmans; Peter Willems; Guy Marchal

X-ray detector systems can be characterized by their measured or estimated detective quantum efficiency (DQE). Assessment of DQE includes a measurement of the modulation transfer function (MTF) and the normalized noise power spectrum (NNPS). The incoming X-ray quantum flux has to be estimated. In this paper, the influence of the different possibilities regarding the measurement methods and phantoms, the X-ray quantum flux estimation models and the exposure geometry on the DQE of a full field digital mammography detector is assessed. Physical models were used to fit MTF measurements from bar-pattern and edge phantoms. The NNPS was calculated by 2D-FFT on a large number of flat-field subimages. The flux was calculated using anode spectra models (Boone, 1997) and attenuation data (NIST). We compared the influence of scattered radiation MTF calculations of both phantoms were similar. The edge method is preferred for practical reasons. NNPS data were similar to 1D synthetic-slit measurements. DQE data compared well with literature. Different exposure geometry conditions (with scattered radiation) showed similar results but a siginificantly lower DQE than in absence of scattered radiation. DQE assessment is feasible using normal exposure conditions, an edge phantom and calculated estimations of the flux.


Medical Imaging 2003: Physics of Medical Imaging | 2003

Use of MTF calculation in global and local resolution assessment in digital mammography

Frank Rogge; Hilde Bosmans; Peter Willems; Guy Marchal

The purpose of this study is to propose a test procedure for global and local resolution assessment in digital mammography to detect sharpness problems. The MTF calculation was based on the presampled edge method. In a first phase, we compared the effect of geometry and exposure conditions on the MTF. Results were: (1) the MTF was reproducible; (2) MTF data can be corrected for edge angle; (3) scatter conditions have significant influence; (4) edge position in the detector plane has negligible influence; (5) the required edge length for our algorithm is longer than the critical length to get rid of noise effects; (6) exposure conditions have no major influence except at very low dose levels. We propose to approximate clinical working conditions for the global MTF-check, with an edge-object embedded in 45mm PMMA and clinical exposures. Localized MTF calculations with this phantom and software can be automated for QA by the medical physicist. For sharpness analysis all over the detector, we designed a test-object with oblique, parallel bars and automatic software tools are being developed. By means of software simulations, local variations in the sharpness could be detected. Validation in practice and further automation of the software tools is ongoing.


Archive | 1996

Radiation image storage screen comprising and alkali metal halide phosphor

Peter Willems; Paul Leblans; Luc Struye; Johann-Martin Spaeth; Thomas Hangleiter; Carsten Dietze


Archive | 1992

X-ray silver halide photographic material suitable for rapid processing systems

Peter Willems; Freddy Henderickx; Rycke Gino De; Romain Bollen


Archive | 1995

Class of high energy detecting phosphors

Paul Leblans; Peter Willems; Luc Struye; Johann-Martin Spaeth; Thomas Pawlik


Archive | 1992

Photographic developing solution containing an ascorbic acid derivative

Pascal Meeus; Peter Willems; Gino Luc De Rycke


Archive | 1998

Method for obtaining an electrical representation of a radiation image using CCD sensors

Luc Struye; Paul Leblans; Peter Willems

Collaboration


Dive into the Peter Willems's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Rogge

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge