Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Y. Lwigale is active.

Publication


Featured researches published by Peter Y. Lwigale.


Nature Neuroscience | 2008

Robo2-Slit1 dependent cell-cell interactions mediate assembly of the trigeminal ganglion

Celia E. Shiau; Peter Y. Lwigale; Raman M. Das; Stuart A. Wilson; Marianne Bronner-Fraser

Vertebrate cranial sensory ganglia, responsible for sensation of touch, taste and pain in the face and viscera, are composed of both ectodermal placode and neural crest cells. The cellular and molecular interactions allowing generation of complex ganglia remain unknown. Here, we show that proper formation of the trigeminal ganglion, the largest of the cranial ganglia, relies on reciprocal interactions between placode and neural crest cells in chick, as removal of either population resulted in severe defects. We demonstrate that ingressing placode cells express the Robo2 receptor and early migrating cranial neural crest cells express its cognate ligand Slit1. Perturbation of this receptor-ligand interaction by blocking Robo2 function or depleting either Robo2 or Slit1 using RNA interference disrupted proper ganglion formation. The resultant disorganization mimics the effects of neural crest ablation. Thus, our data reveal a novel and essential role for Robo2-Slit1 signaling in mediating neural crest–placode interactions during trigeminal gangliogenesis.


Development | 2004

Graded potential of neural crest to form cornea, sensory neurons and cartilage along the rostrocaudal axis

Peter Y. Lwigale; Gary W. Conrad; Marianne Bronner-Fraser

Neural crest cells arising from different rostrocaudal axial levels form different sets of derivatives as diverse as ganglia, cartilage and cornea. These variations may be due to intrinsic properties of the cell populations, different environmental factors encountered during migration or some combination thereof. We test the relative roles of intrinsic versus extrinsic factors by challenging the developmental potential of cardiac and trunk neural crest cells via transplantation into an ectopic midbrain environment. We then assess long-term survival and differentiation into diverse derivatives, including cornea, trigeminal ganglion and branchial arch cartilage. Despite their ability to migrate to the periocular region, neither cardiac nor trunk neural crest contribute appropriately to the cornea, with cardiac crest cells often forming ectopic masses on the corneal surface. Similarly, the potential of trunk and cardiac neural crest to form somatosensory neurons in the trigeminal ganglion was significantly reduced compared with control midbrain grafts. Cardiac neural crest exhibited a reduced capacity to form cartilage, contributing only nominally to Meckles cartilage, whereas trunk neural crest formed no cartilage after transplantation, even when grafted directly into the first branchial arch. These results suggest that neural crest cells along the rostrocaudal axis display a graded loss in developmental potential to form somatosensory neurons and cartilage even after transplantation to a permissive environment. Hox gene expression was transiently maintained in the cardiac neural tube and neural crest at 12 hours post-transplantation to the midbrain, but was subsequently downregulated. This suggests that long-term differences in Hox gene expression cannot account for rostrocaudal differences in developmental potential of neural crest populations in this case.


Developmental Biology | 2009

Semaphorin3A/neuropilin-1 signaling acts as a molecular switch regulating neural crest migration during cornea development.

Peter Y. Lwigale; Marianne Bronner-Fraser

Cranial neural crest cells migrate into the periocular region and later contribute to various ocular tissues including the cornea, ciliary body and iris. After reaching the eye, they initially pause before migrating over the lens to form the cornea. Interestingly, removal of the lens leads to premature invasion and abnormal differentiation of the cornea. In exploring the molecular mechanisms underlying this effect, we find that semaphorin3A (Sema3A) is expressed in the lens placode and epithelium continuously throughout eye development. Interestingly, neuropilin-1 (Npn-1) is expressed by periocular neural crest but down-regulated, in a manner independent of the lens, by the subpopulation that migrates into the eye and gives rise to the cornea endothelium and stroma. In contrast, Npn-1 expressing neural crest cells remain in the periocular region and contribute to the anterior uvea and ocular blood vessels. Introduction of a peptide that inhibits Sema3A/Npn-1 signaling results in premature entry of neural crest cells over the lens that phenocopies lens ablation. Furthermore, Sema3A inhibits periocular neural crest migration in vitro. Taken together, our data reveal a novel and essential role of Sema3A/Npn-1 signaling in coordinating periocular neural crest migration that is vital for proper ocular development.


Methods in Cell Biology | 2008

Other chimeras: quail-duck and mouse-chick.

Peter Y. Lwigale; Richard A. Schneider

Publisher Summary This chapter describes major techniques and methods that generally employ to generate either quail–duck or mouse–chick chimeras. It presents a few examples of types of experiments that have already proven successful and yielded valuable information. The avian embryo is easily accessible for experimental manipulations and highly suitable for embryological and molecular procedures, such as microsurgical grafting of tissues and cells, use of markers to track cell lineages, and perturbation of gene function by electroporation or transfection with genetic material, there are limitations to the system as a genetic model. In contrast, the mouse embryo is well studied as a mammalian genetic model using transgenesis and gene targeting but is not easily amenable to embryological manipulations. Limitations that hinder the use of the avian and mouse models separately are successfully circumvented by performing mouse–chick tissue recombination experiments and by generating mouse–chick and/ or mouse–quail chimeras. Heterogeneous chimeras composed of donor and host parts can help identify embryonic events that regulate the spatial and temporal patterning of anatomical elements, reveal the hierarchical levels of organization that enable precise structural and functional integration, elucidate signaling interactions that drive histogenic differentiation, and point to molecular and cellular mechanisms that underlie species-specific evolution. The potential for novel applications of quail–duck and mouse–chick chimeras is great, especially in conjunction with the rapid advancement of modern techniques in genomics, proteomics, stem cells, and regenerative medicine.


Investigative Ophthalmology & Visual Science | 2011

Innervation of the Mouse Cornea during Development

Chelsey C. McKenna; Peter Y. Lwigale

PURPOSE Dense innervation of the cornea is important for maintaining its homeostasis and transparency. Although corneal nerves have been well studied in adults, little is known about mammalian corneal innervation during development. This study provides a detailed profile of nerves at various stages of mouse cornea development. METHODS Mouse heads and corneas were collected at various stages of development including embryonic days (E)12.5 to E16.5, postnatal days (P)0, P10, three weeks after birth, and the adult. Corneas were immunostained with an anti-neuron-specific β-tubulin antibody (TUJ1). Fluorescently labeled nerves in whole-mount tissues and sections were imaged and analyzed for their axonal projections during eye development. RESULTS The first nerve bundles appear at the periphery of the anterior portion of the eye by E12.5. Initial projection into the stroma occurs at E13.5 without formation of a pericorneal nerve ring. Between E13.5 and E16.5, nerve bundles project directly into the periphery of the presumptive cornea stroma. They branch repeatedly as they extend toward the cornea center and epithelium. Concomitantly, nerve bundles originating from four quadrants of the eye bifurcate into smaller branches that innervate the entire stroma. The first epithelial innervation occurs at E16.5. Epithelial nerves arrange into patterns that project toward the center subsequently forming a swirl at three weeks after birth, which becomes more pronounced in adults. CONCLUSIONS Nerve bundles that arise from four quadrants of the eye innervate the mouse cornea. The nerve bundles directly innervate the stroma without forming a pericorneal nerve ring. Radial arrangement of epithelial nerves gradually becomes centrally oriented, subsequently forming a swirl pattern.


Developmental Biology | 2012

Nerve repulsion by the lens and cornea during cornea innervation is dependent on Robo–Slit signaling and diminishes with neuron age

Tyler Schwend; Peter Y. Lwigale; Gary W. Conrad

The cornea, the most densely innervated tissue on the surface of the body, becomes innervated in a series of highly coordinated developmental events. During cornea development, chick trigeminal nerve growth cones reach the cornea margin at embryonic day (E)5, where they are initially repelled for days from E5 to E8, instead encircling the corneal periphery in a nerve ring prior to entering on E9. The molecular events coordinating growth cone guidance during cornea development are poorly understood. Here we evaluated a potential role for the Robo-Slit nerve guidance family. We found that Slits 1, 2 and 3 expression in the cornea and lens persisted during all stages of cornea innervation examined. Robo1 expression was developmentally regulated in trigeminal cell bodies, expressed robustly during nerve ring formation (E5-8), then later declining concurrent with projection of growth cones into the cornea. In this study we provide in vivo and in vitro evidence that Robo-Slit signaling guides trigeminal nerves during cornea innervation. Transient, localized inhibition of Robo-Slit signaling, by means of beads loaded with inhibitory Robo-Fc protein implanted into the developing eyefield in vivo, led to disorganized nerve ring formation and premature cornea innervation. Additionally, when trigeminal explants (source of neurons) were oriented adjacent to lens vesicles or corneas (source of repellant molecules) in organotypic tissue culture both lens and cornea tissues strongly repelled E7 trigeminal neurites, except in the presence of inhibitory Robo-Fc protein. In contrast, E10 trigeminal neurites were not as strongly repelled by cornea, and presence of Robo-Slit inhibitory protein had no effect. In full, these findings suggest that nerve repulsion from the lens and cornea during nerve ring formation is mediated by Robo-Slit signaling. Later, a shift in nerve guidance behavior occurs, in part due to molecular changes in trigeminal neurons, including Robo1 downregulation, thus allowing nerves to find the Slit-expressing cornea permissive for growth cones.


Developmental Dynamics | 2013

Expression of pro‐ and anti‐angiogenic factors during the formation of the periocular vasculature and development of the avian cornea

Sam Kwiatkowski; Ravi Munjaal; Teresa Lee; Peter Y. Lwigale

Background: During embryonic development, endothelial precursor cells (angioblasts) migrate relatively long distances to form the primary vascular plexus. The migratory behavior of angioblasts and localization of the primitive blood vessels is tightly regulated by pro‐angiogenic and anti‐angiogenic factors encountered in the embryonic environment. Despite the importance of corneal avascularity to proper vision, it is not known when avascularity is established in the developing cornea and how pro‐ and anti‐angiogenic factors regulate this process. Results and Discussion: Using Tg(tie1:H2B:eYFP) transgenic quail embryos to visualize fluorescently labeled angioblasts, we show that the presumptive cornea remains avascular despite the invasion of cells from the periocular region where migratory angioblasts reside and form the primary vasculature. Semiquantitative reverse transcriptase polymerase chain reaction analysis and spatiotemporal examination of gene expression revealed that pro‐ and anti‐angiogenic factors were expressed in patterns indicating their potential roles in angioblast guidance. Conclusions: Our findings show for the first time that chick corneal avascularity is established and maintained during development as the periocular vasculature forms. We also identify potential candidate pro‐ and anti‐angiogenic factors that may play crucial roles during vascular patterning in the anterior eye. Developmental Dynamics 242:738–751, 2013.


Progress in Molecular Biology and Translational Science | 2015

Corneal Development: Different Cells from a Common Progenitor.

Peter Y. Lwigale

Development of the vertebrate cornea is a multistep process that involves cellular interactions between various ectodermal-derived tissues. Bilateral interactions between the neural ectoderm-derived optic vesicles and the cranial ectoderm give rise to the presumptive corneal epithelium and other epithelia of the ocular surface. Interactions between the neural tube and the adjacent ectoderm give rise to the neural crest cells, a highly migratory and multipotent cell population. Neural crest cells migrate between the lens and presumptive corneal epithelium to form the corneal endothelium and the stromal keratocytes. The sensory nerves that abundantly innervate the corneal stroma and epithelium originate from the neural crest- and ectodermal placode-derived trigeminal ganglion. Concomitant with corneal innervation is the formation of the limbal vascular plexus and the establishment of corneal avascularity. This review summarizes historical and current research to provide an overview of the genesis of the cellular layers of the cornea, corneal innervation, and avascularity.


Developmental Biology | 2014

Sema3A maintains corneal avascularity during development by inhibiting Vegf induced angioblast migration

Chelsey C. McKenna; Ana F. Ojeda; James Spurlin; Sam Kwiatkowski; Peter Y. Lwigale

Corneal avascularity is important for optical clarity and normal vision. However, the molecular mechanisms that prevent angioblast migration and vascularization of the developing cornea are not clear. Previously we showed that periocular angioblasts and forming ocular blood vessels avoid the presumptive cornea despite dynamic ingression of neural crest cells. In the current study, we investigate the role of Semaphorin3A (Sema3A), a cell guidance chemorepellent, on angioblast migration and corneal avascularity during development. We show that Sema3A, Vegf, and Nrp1 are expressed in the anterior eye during cornea development. Sema3A mRNA transcripts are expressed at significantly higher levels than Vegf in the lens that is positioned adjacent to the presumptive cornea. Blockade of Sema3A signaling via lens removal or injection of a synthetic Sema3A inhibitor causes ectopic migration of angioblasts into the cornea and results in its subsequent vascularization. In addition, using bead implantation, we demonstrate that exogenous Sema3A protein inhibits Vegf-induced vascularization of the cornea. In agreement with these findings, loss of Sema/Nrp1 signaling in Nrp1(Sema-) mutant mice results in ectopic angioblasts and vascularization of the embryonic mouse corneas. Altogether, our results reveal Sema3A signaling as an important cue during the establishment of corneal avascularity in both chick and mouse embryos. Our study introduces cornea development as a new model for studying the mechanisms involved in vascular patterning during embryogenesis and it also provides new insights into therapeutic potential for Sema3A in neovascular diseases.


Gene Expression Patterns | 2013

Expression of CXCL12 and CXCL14 during eye development in chick and mouse.

Ana F. Ojeda; Ravi Munjaal; Peter Y. Lwigale

Vertebrate eye development is a complex multistep process coordinated by signals from the lens, optic cup and periocular mesenchyme. Although chemokines are increasingly being recognized as key players in cell migration, proliferation, and differentiation during embryonic development, their potential role during eye development has not been examined. In this study, we demonstrate by section in situ hybridization that CXCL12 and CXCL14 are expressed during ocular development. CXCL12 is expressed in the periocular mesenchyme, ocular blood vessels, retina, and eyelid mesenchyme, and its expression pattern is conserved between chick and mouse in most tissues. Expression of CXCL14 is localized in the ocular ectoderm, limbal epithelium, scleral papillae, eyelid mesenchyme, corneal keratocytes, hair follicles, and retina, and it was only conserved in the upper eyelid ectoderm of chick and mouse. The unique and non-overlapping patterns of CXCL12 and CXCL14 expression in ocular tissues suggest that these two chemokines may interact and have important functions in cell proliferation, differentiation and migration during eye development.

Collaboration


Dive into the Peter Y. Lwigale's collaboration.

Top Co-Authors

Avatar

Marianne Bronner-Fraser

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Celia E. Shiau

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Bronner-Fraser

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge