Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tyler Schwend is active.

Publication


Featured researches published by Tyler Schwend.


Investigative Ophthalmology & Visual Science | 2013

Resistance of Corneal RFUVA-Cross-Linked Collagens and Small Leucine-Rich Proteoglycans to Degradation by Matrix Metalloproteinases

Yuntao Zhang; Xiuli Mao; Tyler Schwend; Stacy L. Littlechild; Gary W. Conrad

PURPOSE Extracellular matrix metalloproteinases (MMPs) are thought to play a crucial role in corneal degradation associated with the pathological progression of keratoconus. Currently, corneal cross-linking by riboflavin and ultraviolet A (RFUVA) has received significant attention for treatment of keratoconus. However, the extent to which MMPs digest cross-linked collagen and small leucine-rich proteoglycans (SLRPs) remains unknown. In this study, the resistance of RFUVA-cross-linked collagens and SLRPs to MMPs has been investigated. METHODS To investigate the ability of MMPs to digest cross-linked collagen and SLRPs, a model reaction system using purified collagen type I, type IV, and nonglycosylated, commercially available recombinant SLRPs, keratocan, lumican, mimecan, decorin, and biglycan in solution in vitro has been compared using reactions inside an intact bovine cornea, ex vivo. RESULTS Our data demonstrate that corneal cross-linked collagen type I and type IV are resistant to cleavage by MMP-1, MMP-2, MMP-9, and MMP-13, whereas non-cross-linked collagen I, IV, and natively glycosylated SLRPs are susceptible to degradation by MMPs. In addition, both cross-linked SLRPs themselves and cross-linked polymers of SLRPs and collagen appear able to resist degradation. These results suggest that the interactions between SLRPs and collagen caused by RFUVA protect both SLRPs and collagen fibrils from cleavage by MMPs. CONCLUSIONS A novel approach for understanding the biochemical mechanism whereby RFUVA cross-linking stops keratoconus progression has been achieved.


Journal of Lipid Research | 2011

Requirement of Npc1 and availability of cholesterol for early embryonic cell movements in zebrafish

Tyler Schwend; Evyn J. Loucks; Diana Snyder; Sara C. Ahlgren

Abstract Niemann-Pick disease, type C (NP-C), often associated with Niemann-Pick disease, type C1 (NPC1) mutations, is a cholesterol-storage disorder characterized by cellular lipid accumulation, neurodegeneration, and reduced steroid production. To study NPC1 function in vivo, we cloned zebrafish npc1 and analyzed its gene expression and activity by reducing Npc1 protein with morpholino (MO)-oligonucleotides. Filipin staining in npc1-morphant cells was punctate, suggesting abnormal accumulation of cholesterol. Developmentally, reducing Npc1 did not disrupt early cell fate or survival; however, early morphogenetic movements were delayed, and the actin cytoskeleton network was abnormal. MO-induced defects were rescued with ectopic expression of mouse NPC1, demonstrating functional gene conservation, and by treatments with steroids pregnenolone or dexamethasone, suggesting that reduced steroidogenesis contributed to abnormal cell movements. Cell death was found in anterior tissues of npc1 morphants at later stages, consistent with findings in mammals. Collectively, these studies show that npc1 is required early for proper cell movement and cholesterol localization and later for cell survival.


Development | 2013

Maternal Dead-End1 is required for vegetal cortical microtubule assembly during Xenopus axis specification.

Wenyan Mei; Zhigang Jin; Fangfang Lai; Tyler Schwend; Douglas W. Houston; Mary Lou King; Jing Yang

Vertebrate axis specification is an evolutionarily conserved developmental process that relies on asymmetric activation of Wnt signaling and subsequent organizer formation on the future dorsal side of the embryo. Although roles of Wnt signaling during organizer formation have been studied extensively, it is unclear how the Wnt pathway is asymmetrically activated. In Xenopus and zebrafish, the Wnt pathway is triggered by dorsal determinants, which are translocated from the vegetal pole to the future dorsal side of the embryo shortly after fertilization. The transport of dorsal determinants requires a unique microtubule network formed in the vegetal cortex shortly after fertilization. However, molecular mechanisms governing the formation of vegetal cortical microtubule arrays are not fully understood. Here we report that Dead-End 1 (Dnd1), an RNA-binding protein required for primordial germ cell development during later stages of embryogenesis, is essential for Xenopus axis specification. We show that knockdown of maternal Dnd1 specifically interferes with the formation of vegetal cortical microtubules. This, in turn, impairs translocation of dorsal determinants, the initiation of Wnt signaling, organizer formation, and ultimately results in ventralized embryos. Furthermore, we found that Dnd1 binds to a uridine-rich sequence in the 3′-UTR of trim36, a vegetally localized maternal RNA essential for vegetal cortical microtubule assembly. Dnd1 anchors trim36 to the vegetal cortex in the egg, promoting high concentrations of Trim36 protein there. Our work thus demonstrates a novel and surprising function for Dnd1 during early development and provides an important link between Dnd1, mRNA localization, the microtubule cytoskeleton and axis specification.


Developmental Biology | 2012

Nerve repulsion by the lens and cornea during cornea innervation is dependent on Robo–Slit signaling and diminishes with neuron age

Tyler Schwend; Peter Y. Lwigale; Gary W. Conrad

The cornea, the most densely innervated tissue on the surface of the body, becomes innervated in a series of highly coordinated developmental events. During cornea development, chick trigeminal nerve growth cones reach the cornea margin at embryonic day (E)5, where they are initially repelled for days from E5 to E8, instead encircling the corneal periphery in a nerve ring prior to entering on E9. The molecular events coordinating growth cone guidance during cornea development are poorly understood. Here we evaluated a potential role for the Robo-Slit nerve guidance family. We found that Slits 1, 2 and 3 expression in the cornea and lens persisted during all stages of cornea innervation examined. Robo1 expression was developmentally regulated in trigeminal cell bodies, expressed robustly during nerve ring formation (E5-8), then later declining concurrent with projection of growth cones into the cornea. In this study we provide in vivo and in vitro evidence that Robo-Slit signaling guides trigeminal nerves during cornea innervation. Transient, localized inhibition of Robo-Slit signaling, by means of beads loaded with inhibitory Robo-Fc protein implanted into the developing eyefield in vivo, led to disorganized nerve ring formation and premature cornea innervation. Additionally, when trigeminal explants (source of neurons) were oriented adjacent to lens vesicles or corneas (source of repellant molecules) in organotypic tissue culture both lens and cornea tissues strongly repelled E7 trigeminal neurites, except in the presence of inhibitory Robo-Fc protein. In contrast, E10 trigeminal neurites were not as strongly repelled by cornea, and presence of Robo-Slit inhibitory protein had no effect. In full, these findings suggest that nerve repulsion from the lens and cornea during nerve ring formation is mediated by Robo-Slit signaling. Later, a shift in nerve guidance behavior occurs, in part due to molecular changes in trigeminal neurons, including Robo1 downregulation, thus allowing nerves to find the Slit-expressing cornea permissive for growth cones.


Investigative Ophthalmology & Visual Science | 2012

Expression and Localization of Neural Cell Adhesion Molecule and Polysialic Acid during Chick Corneal Development

Xiuli Mao; Tyler Schwend; Gary W. Conrad

PURPOSE To assay for expression and localization of neural cell adhesion molecule (NCAM) and polysialic acid (polySia) in the chick cornea during embryonic and postnatal development. METHODS Real time quantitative PCR and Western blot analyses were used to determine NCAM expression and polysiaylation in embryonic, hatchling, and adult chick corneas. Immunofluorescence staining for NCAM and polySia was conducted on cryosections of embryonic and adult corneas, whole embryonic corneas, and trigeminal neurons. RESULTS NCAM and ST8SiaII mRNA transcripts peaked by embryonic day (E)9, remained steady between E10 and E14 and slowly decreased thereafter during embryonic development. Both gene transcripts showed > 190-fold decline in the adult chick cornea compared with E9. In contrast, ST8SiaIV expression gradually decreased 26.5-fold from E6 to E19, increased thereafter, and rose to the early embryonic level in the adult cornea. Western blot analysis revealed NCAM was polysialylated and its expression developmentally changed. Other polysiaylated proteins aside from NCAM were also detected by Western blot analysis. Five NCAM isoforms including NCAM-120, NCAM-180 and three soluble NCAM isoforms with low molecular weights (87-96 kDa) were present in chick corneas, with NCAM-120 being the predominate isoform. NCAM was localized to the epithelium, stroma, and stromal extracellular matrix (ECM) of the embryonic cornea. In stroma, NCAM expression shifted from anterior to posterior stroma during embryonic development and eventually became undetectable in 20-week-old adult cornea. Additionally, both NCAM and polySia were detected on embryonic corneal and pericorneal nerves. CONCLUSIONS NCAM and polySia are expressed and developmentally regulated in chick corneas. Both membrane-associated and soluble NCAM isoforms are expressed in chick corneas. The distributions of NCAM and polySia in cornea and on corneal nerves suggest their potential functions in corneal innervation.


Journal of Biological Chemistry | 2013

Stabilization of Speckle-type POZ Protein (Spop) by Daz Interacting Protein 1 (Dzip1) Is Essential for Gli Turnover and the Proper Output of Hedgehog Signaling

Tyler Schwend; Zhigang Jin; Kai Jiang; Brian J. Mitchell; Jianhang Jia; Jing Yang

Background: Although Dzip1 positively influences Hedgehog signaling by regulating ciliogenesis, it inhibits the Hedgehog pathway through an unclear mechanism. Results: Dzip1 knockdown destabilizes Spop E3 ubiquitin ligase, leading to increased Gli transcription factor levels and phenotypes resembling Hedgehog signaling activation. Conclusion: Dzip1 inhibits Hedgehog signaling through stabilizing Spop. Significance: We uncover a novel Gli regulatory mechanism. The Hedgehog (Hh) pathway is essential for embryonic development and adult tissue homeostasis. The Gli/Cubitus interruptus (Ci) family of transcription factors acts at the downstream end of the pathway to mediate Hh signaling. Both Hh-dependent and -independent Gli regulatory mechanisms are important for the output of Hh signaling. Daz interacting protein 1 (Dzip1) has bipartite positive and negative functions in the Hh pathway. The positive Hh regulatory function appears to be attributed to a requirement for Dzip1 during ciliogenesis. The mechanism by which Dzip1 inhibits Hh signaling, however, remains largely unclear. We recently found that Dzip1 is required for Gli turnover, which may account for its inhibitory function in Hh signaling. Here, we report that Dzip1 regulates Gli/Ci turnover by preventing degradation of speckle-type POZ protein (Spop), a protein that promotes proteasome-dependent turnover of Gli proteins. We provide evidence that Dzip1 regulates the stability of Spop independent of its function in ciliogenesis. Partial knockdown of Dzip1 to levels insufficient for perturbing ciliogenesis, sensitized Xenopus embryos to Hh signaling, leading to phenotypes that resemble activation of Hh signaling. Importantly, overexpression of Spop was able to restore proper Gli protein turnover and rescue phenotypes in Dzip1-depleted embryos. Consistently, depletion of Dzip1 in Drosophila S2 cells destabilized Hh-induced BTB protein (HIB), the Drosophila homolog of Spop, and increased the level of Ci. Thus, Dzip1-dependent stabilization of Spop/HIB is evolutionarily conserved and essential for proper regulation of Gli/Ci proteins in the Hh pathway.


Investigative Ophthalmology & Visual Science | 2012

Corneal Sulfated Glycosaminoglycans and Their Effects on Trigeminal Nerve Growth Cone Behavior In Vitro: Roles for ECM in Cornea Innervation

Tyler Schwend; Ryan Deaton; Yuntao Zhang; Bruce Caterson; Gary W. Conrad

PURPOSE Sensory trigeminal nerve growth cones innervate the cornea in a highly coordinated fashion. The purpose of this study was to determine if extracellular matrix glycosaminoglycans (ECM-GAGs), including keratan sulfate (KS), dermatan sulfate (DS), and chondroitin sulfate A (CSA) and C (CSC), polymerized in developing eyefronts, may provide guidance cues to nerves during cornea innervation. METHODS Immunostaining using antineuron-specific-β-tubulin and monoclonal antibodies for KS, DS, and CSA/C was performed on eyefronts from embryonic day (E) 9 to E14 and staining visualized by confocal microscopy. Effects of purified GAGs on trigeminal nerve growth cone behavior were tested using in vitro neuronal explant cultures. RESULTS At E9 to E10, nerves exiting the pericorneal nerve ring grew as tight fascicles, advancing straight toward the corneal stroma. In contrast, upon entering the stroma, nerves bifurcated repeatedly as they extended anteriorly toward the epithelium. KS was localized in the path of trigeminal nerves, whereas DS and CSA/C-rich areas were avoided by growth cones. When E10 trigeminal neurons were cultured on different substrates comprised of purified GAG molecules, their neurite growth cone behavior varied depending on GAG type, concentration, and mode of presentation (immobilized versus soluble). High concentrations of immobilized KS, DS, and CSA/C inhibited neurite growth to varying degrees. Neurites traversing lower, permissive concentrations of immobilized DS and CSA/C displayed increased fasciculation and decreased branching, whereas KS caused decreased fasciculation and increased branching. Enzymatic digestion of sulfated GAGs canceled their effects on trigeminal neurons. CONCLUSIONS Data herein suggest that GAGs may direct the movement of trigeminal nerve growth cones innervating the cornea.


Developmental Biology | 2015

Effects of polysialic acid on sensory innervation of the cornea

Xiuli Mao; Yuntao Zhang; Tyler Schwend; Gary W. Conrad

Sensory trigeminal growth cones innervate the cornea in a coordinated fashion during embryonic development. Polysialic acid (polySia) is known for its important roles during nerve development and regeneration. The purpose of this work is to determine whether polySia, present in developing eyefronts and on the surface of sensory nerves, may provide guidance cues to nerves during corneal innervation. Expression and localization of polySia in embryonic day (E)5-14 chick eyefronts and E9 trigeminal ganglia were identified using Western blotting and immunostaining. Effects of polySia removal on trigeminal nerve growth behavior were determined in vivo, using exogenous endoneuraminidase (endoN) treatments to remove polySia substrates during chick cornea development, and in vitro, using neuronal explant cultures. PolySia substrates, made by the physical adsorption of colominic acid to a surface coated with poly-d-lysine (PDL), were used as a model to investigate functions of the polySia expressed in axonal environments. PolySia was localized within developing eyefronts and on trigeminal sensory nerves. Distributions of PolySia in corneas and pericorneal regions are developmentally regulated. PolySia removal caused defasciculation of the limbal nerve trunk in vivo from E7 to E10. Removal of polySia on trigeminal neurites inhibited neurite outgrowth and caused axon defasciculation, but did not affect Neural Cell Adhesion Molecule (NCAM) expression or Schwann cell migration in vitro. PolySia substrates in vitro inhibited outgrowth of trigeminal neurites and promoted their fasciculation. In conclusion, polySia is localized on corneal nerves and in their targeting environment during early developing stages of chick embryos. PolySias promote fasciculation of trigeminal axons in vivo and in vitro, whereas, in contrast, their removal promotes defasciculation.


Journal of Cell Science | 2016

Members of the Rusc protein family interact with Sufu and inhibit vertebrate Hedgehog signaling

Zhigang Jin; Tyler Schwend; Jia Fu; Zehua Bao; Jing Liang; Huimin Zhao; Wenyan Mei; Jing Yang


Investigative Ophthalmology & Visual Science | 2012

Expression and Localization of Polysialic Acid in Chick Cornea

Xiuli Mao; Tyler Schwend; Gary W. Conrad

Collaboration


Dive into the Tyler Schwend's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiuli Mao

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuntao Zhang

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

Jing Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Diana Snyder

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara C. Ahlgren

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge